IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v131y2019icp137-143.html
   My bibliography  Save this article

Process modeling and simulation for butanol removing from fermentation broth by extraction with biodiesel

Author

Listed:
  • Dumitrescu, Anca Madalina
  • Banu, Ionut
  • Bumbac, Gheorghe

Abstract

The present paper evaluates the feasibility of a process flowsheet for butanol bioproduction, as pure compound or as a blend with the biodiesel used as the liquid-liquid extraction (LLEx) solvent. In order to evidence this aspect, a modeling and simulation study was performed using Aspen Hysys commercial simulator. Process simulation results evidenced specific (per ton of butanol separated) power consumption of 22.5 kW/t and hot and cold utility specific consumptions were in power equivalences of 3.4 MW and 2.6 MW respectively. In order to achieve a feasible extraction process of biobutanol from the fermentative broth, a specific quantity of 1.125 t/t biodiesel (recovered as a blend) was required.

Suggested Citation

  • Dumitrescu, Anca Madalina & Banu, Ionut & Bumbac, Gheorghe, 2019. "Process modeling and simulation for butanol removing from fermentation broth by extraction with biodiesel," Renewable Energy, Elsevier, vol. 131(C), pages 137-143.
  • Handle: RePEc:eee:renene:v:131:y:2019:i:c:p:137-143
    DOI: 10.1016/j.renene.2018.07.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118308371
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.07.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Youshuang & Chang, Yunkang & Guan, Jing & Shanguan, Guoqiang & Xin, Fengxue, 2016. "Butanol production from organosolv treated spent mushroom substrate integrated with in situ biodiesel extraction," Renewable Energy, Elsevier, vol. 96(PA), pages 656-661.
    2. Liu, Haifeng & Li, Shanju & Zheng, Zunqing & Xu, Jia & Yao, Mingfa, 2013. "Effects of n-butanol, 2-butanol, and methyl octynoate addition to diesel fuel on combustion and emissions over a wide range of exhaust gas recirculation (EGR) rates," Applied Energy, Elsevier, vol. 112(C), pages 246-256.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen, Xudong & Wang, Yang & Liu, Daming, 2020. "Bio-butanol as a new generation of clean alternative fuel for SI (spark ignition) and CI (compression ignition) engines," Renewable Energy, Elsevier, vol. 147(P1), pages 2494-2521.
    2. Li, Guang & Li, Na & Liu, Fan & Zhou, Xing, 2022. "Development of life cycle water footprint for lignocellulosic biomass to biobutanol via thermochemical method," Renewable Energy, Elsevier, vol. 198(C), pages 222-227.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xinlei & Wang, Hu & Wang, Xiaofeng & Zheng, Zunqing & Yao, Mingfa, 2017. "Experimental and modelling investigations of the diesel surrogate fuels in direct injection compression ignition combustion," Applied Energy, Elsevier, vol. 189(C), pages 187-200.
    2. Dongzhi Gao & Mubasher Ikram & Chao Geng & Yangyi Wu & Xiaodan Li & Chao Jin & Zunqing Zheng & Mengliang Li & Haifeng Liu, 2023. "Effects of Anhydrous and Hydrous Fusel Oil on Combustion and Emissions on a Heavy-Duty Compression-Ignition Engine," Energies, MDPI, vol. 16(17), pages 1-14, August.
    3. Zheng, Zunqing & Wang, XiaoFeng & Zhong, Xiaofan & Hu, Bin & Liu, Haifeng & Yao, Mingfa, 2016. "Experimental study on the combustion and emissions fueling biodiesel/n-butanol, biodiesel/ethanol and biodiesel/2,5-dimethylfuran on a diesel engine," Energy, Elsevier, vol. 115(P1), pages 539-549.
    4. Huang, Haozhong & Zhou, Chengzhong & Liu, Qingsheng & Wang, Qingxin & Wang, Xueqiang, 2016. "An experimental study on the combustion and emission characteristics of a diesel engine under low temperature combustion of diesel/gasoline/n-butanol blends," Applied Energy, Elsevier, vol. 170(C), pages 219-231.
    5. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    6. Andwari, Amin Mahmoudzadeh & Aziz, Azhar Abdul & Said, Mohd Farid Muhamad & Latiff, Zulkarnain Abdul, 2014. "Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine," Applied Energy, Elsevier, vol. 134(C), pages 1-10.
    7. Wei Tian & Yunlu Chu & Zhiqiang Han & Xiang Wang & Wenbin Yu & Xueshun Wu, 2019. "Experimental Study of the Effect of Intake Oxygen Concentration on Engine Combustion Process and Hydrocarbon Emissions with N-Butanol-Diesel Blended Fuel," Energies, MDPI, vol. 12(7), pages 1-17, April.
    8. David Fernández-Rodríguez & Magín Lapuerta & Lizzie German, 2021. "Progress in the Use of Biobutanol Blends in Diesel Engines," Energies, MDPI, vol. 14(11), pages 1-22, May.
    9. Zhang, Zhi-Hui & Balasubramanian, Rajasekhar, 2016. "Investigation of particulate emission characteristics of a diesel engine fueled with higher alcohols/biodiesel blends," Applied Energy, Elsevier, vol. 163(C), pages 71-80.
    10. Abedini, Amirmohammad & Amiri, Hamid & Karimi, Keikhosro, 2020. "Efficient biobutanol production from potato peel wastes by separate and simultaneous inhibitors removal and pretreatment," Renewable Energy, Elsevier, vol. 160(C), pages 269-277.
    11. Rezaei, Javad & Shahbakhti, Mahdi & Bahri, Bahram & Aziz, Azhar Abdul, 2015. "Performance prediction of HCCI engines with oxygenated fuels using artificial neural networks," Applied Energy, Elsevier, vol. 138(C), pages 460-473.
    12. Li, Yuqiang & Chen, Yong & Wu, Gang & Liu, Jiangwei, 2018. "Experimental evaluation of water-containing isopropanol-n-butanol-ethanol and gasoline blend as a fuel candidate in spark-ignition engine," Applied Energy, Elsevier, vol. 219(C), pages 42-52.
    13. Liu, Haifeng & Wang, Xin & Zheng, Zunqing & Gu, Jingbo & Wang, Hu & Yao, Mingfa, 2014. "Experimental and simulation investigation of the combustion characteristics and emissions using n-butanol/biodiesel dual-fuel injection on a diesel engine," Energy, Elsevier, vol. 74(C), pages 741-752.
    14. Raptotasios, Spiridon I. & Sakellaridis, Nikolaos F. & Papagiannakis, Roussos G. & Hountalas, Dimitrios T., 2015. "Application of a multi-zone combustion model to investigate the NOx reduction potential of two-stroke marine diesel engines using EGR," Applied Energy, Elsevier, vol. 157(C), pages 814-823.
    15. Rajesh Kumar, B. & Saravanan, S., 2016. "Use of higher alcohol biofuels in diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 84-115.
    16. Jinhong Shi & Tie Wang & Zhen Zhao & Tiantian Yang & Zhengwu Zhang, 2018. "Experimental Study of Injection Parameters on the Performance of a Diesel Engine with Fischer–Tropsch Fuel Synthesized from Coal," Energies, MDPI, vol. 11(12), pages 1-11, November.
    17. Jeftić, Marko & Zheng, Ming, 2015. "A study of the effect of post injection on combustion and emissions with premixing enhanced fueling strategies," Applied Energy, Elsevier, vol. 157(C), pages 861-870.
    18. Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Kosmadakis, George M. & Giakoumis, Evangelos G., 2020. "Exergy assessment of combustion and EGR and load effects in DI diesel engine using comprehensive two-zone modeling," Energy, Elsevier, vol. 202(C).
    19. Liu, Haifeng & Xu, Jia & Zheng, Zunqing & Li, Shanju & Yao, Mingfa, 2013. "Effects of fuel properties on combustion and emissions under both conventional and low temperature combustion mode fueling 2,5-dimethylfuran/diesel blends," Energy, Elsevier, vol. 62(C), pages 215-223.
    20. Huang, Haozhong & Wang, Qingxin & Shi, Cheng & Liu, Qingsheng & Zhou, Chengzhong, 2016. "Comparative study of effects of pilot injection and fuel properties on low temperature combustion in diesel engine under a medium EGR rate," Applied Energy, Elsevier, vol. 179(C), pages 1194-1208.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:131:y:2019:i:c:p:137-143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.