IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v129y2018ipap629-637.html
   My bibliography  Save this article

Complete characterization of pruning waste from the lechero tree (Euphorbia laurifolia L.) as raw material for biofuel

Author

Listed:
  • Velázquez-Martí, B.
  • Gaibor-Cházvez, J.
  • Niño-Ruiz, Z.
  • Narbona-Sahuquillo, S.

Abstract

The aim of this study is to conduct a complete characterization of the pruning waste from the lechero tree. This tree species is of particular relevance in Ecuador for its use as biomass since it yields large amounts of pruning waste, it has a high propagation capacity and very fast growth, for both the trunk and branches. The pruning waste consists of a mixture of wood and leaves, which are subjected to caloric analysis, elemental analysis, proximate analysis, thermogravimetric analysis and fermentability. The average dry pruned biomass obtained per tree is 9.95 kg, with a 1.49 kg standard deviation. The average ratio of leaves in pruned biomass is the 40%. Regression model to determine pruning waste biomass from plant measurements was obtained with 0.7 of r2. The calorific value of these residues is 19 MJ/kg average. N and ash content is influenced by leaf content. A leaf content less than 25% represent N content lower than 1%, and 6% ash content. Prediction models to higher heat value (kJ/kg) based on elemental, proximate and structural analysis is presented.

Suggested Citation

  • Velázquez-Martí, B. & Gaibor-Cházvez, J. & Niño-Ruiz, Z. & Narbona-Sahuquillo, S., 2018. "Complete characterization of pruning waste from the lechero tree (Euphorbia laurifolia L.) as raw material for biofuel," Renewable Energy, Elsevier, vol. 129(PA), pages 629-637.
  • Handle: RePEc:eee:renene:v:129:y:2018:i:pa:p:629-637
    DOI: 10.1016/j.renene.2018.06.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118306955
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.06.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    2. Vargas-Moreno, J.M. & Callejón-Ferre, A.J. & Pérez-Alonso, J. & Velázquez-Martí, B., 2012. "A review of the mathematical models for predicting the heating value of biomass materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3065-3083.
    3. Sajdak, M. & Velazquez-Marti, B., 2012. "Estimation of pruned biomass form dendrometric parameters on urban forests: Case study of Sophora japonica," Renewable Energy, Elsevier, vol. 47(C), pages 188-193.
    4. Sajdak, M. & Velázquez-Martí, B. & López-Cortés, I. & Fernández-Sarría, A. & Estornell, J., 2014. "Prediction models for estimating pruned biomass obtained from Platanus hispanica Münchh. used for material surveys in urban forests," Renewable Energy, Elsevier, vol. 66(C), pages 178-184.
    5. Velázquez-Martí, B. & Sajdak, M. & López-Cortés, I. & Callejón-Ferre, A.J., 2014. "Wood characterization for energy application proceeding from pruning Morus alba L., Platanus hispanica Münchh. and Sophora japonica L. in urban areas," Renewable Energy, Elsevier, vol. 62(C), pages 478-483.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Donaji Sierra-Zurita & Saúl Santana-Espinoza & Rigoberto Rosales-Serna & Julio César Ríos-Saucedo & Artemio Carrillo-Parra, 2023. "Productivity and Characterization of Biomass Obtained from Pruning of Walnut Orchards in México," Energies, MDPI, vol. 16(5), pages 1-11, February.
    2. Raúl Tauro & Borja Velázquez-Martí & Silvina Manrique & Martin Ricker & René Martínez-Bravo & Víctor M. Ruiz-García & Saraí Ramos-Vargas & Omar Masera & José A. Soria-González & Cynthia Armendáriz-Arn, 2022. "Potential Use of Pruning Residues from Avocado Trees as Energy Input in Rural Communities," Energies, MDPI, vol. 15(5), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alba Mondragón-Valero & Borja Velázquez-Martí & Domingo M. Salazar & Isabel López-Cortés, 2018. "Influence of Fertilization and Rootstocks in the Biomass Energy Characterization of Prunus dulcis (Miller)," Energies, MDPI, vol. 11(5), pages 1-12, May.
    2. Ferla, G. & Caputo, P. & Colaninno, N. & Morello, E., 2020. "Urban greenery management and energy planning: A GIS-based potential evaluation of pruning by-products for energy application for the city of Milan," Renewable Energy, Elsevier, vol. 160(C), pages 185-195.
    3. Xuejun Qian & Jingwen Xue & Yulai Yang & Seong W. Lee, 2021. "Thermal Properties and Combustion-Related Problems Prediction of Agricultural Crop Residues," Energies, MDPI, vol. 14(15), pages 1-18, July.
    4. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    5. Vanbeveren, Stefan P.P. & Spinelli, Raffaele & Eisenbies, Mark & Schweier, Janine & Mola-Yudego, Blas & Magagnotti, Natascia & Acuna, Mauricio & Dimitriou, Ioannis & Ceulemans, Reinhart, 2017. "Mechanised harvesting of short-rotation coppices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 90-104.
    6. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "A review on torrefied biomass pellets as a sustainable alternative to coal in power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 153-160.
    7. Velázquez-Martí, B. & Sajdak, M. & López-Cortés, I. & Callejón-Ferre, A.J., 2014. "Wood characterization for energy application proceeding from pruning Morus alba L., Platanus hispanica Münchh. and Sophora japonica L. in urban areas," Renewable Energy, Elsevier, vol. 62(C), pages 478-483.
    8. Sajdak, M. & Velázquez-Martí, B. & López-Cortés, I., 2014. "Quantitative and qualitative characteristics of biomass derived from pruning Phoenix canariensis hort. ex Chabaud. and Phoenix dactilifera L," Renewable Energy, Elsevier, vol. 71(C), pages 545-552.
    9. Mohamed Ali Mami & Hartmut Mätzing & Hans-Joachim Gehrmann & Dieter Stapf & Rainer Bolduan & Marzouk Lajili, 2018. "Investigation of the Olive Mill Solid Wastes Pellets Combustion in a Counter-Current Fixed Bed Reactor," Energies, MDPI, vol. 11(8), pages 1-21, July.
    10. Gürel, Barış & Kurtuluş, Karani & Yurdakul, Sema & Karaca Dolgun, Gülşah & Akman, Remzi & Önür, Muhammet Enes & Varol, Murat & Keçebaş, Ali & Gürbüz, Habib, 2024. "Combustion of chicken manure and Turkish lignite mixtures in a circulating fluidized bed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    11. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    12. Miguel-Angel Perea-Moreno & Quetzalcoatl Hernandez-Escobedo & Fernando Rueda-Martinez & Alberto-Jesus Perea-Moreno, 2020. "Zapote Seed ( Pouteria mammosa L. ) Valorization for Thermal Energy Generation in Tropical Climates," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    13. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    14. Silva, D.A.L. & Filleti, R.A.P. & Musule, R. & Matheus, T.T. & Freire, F., 2022. "A systematic review and life cycle assessment of biomass pellets and briquettes production in Latin America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    15. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    16. Ye-Eun Lee & Jun-Ho Jo & Sun-Min Kim & Yeong-Seok Yoo, 2017. "Recycling Possibility of the Salty Food Waste by Pyrolysis and Water Scrubbing," Energies, MDPI, vol. 10(2), pages 1-13, February.
    17. Deboni, Tamires Liza & Simioni, Flávio José & Brand, Martha Andreia & Costa, Valdeci José, 2019. "Models for estimating the price of forest biomass used as an energy source: A Brazilian case," Energy Policy, Elsevier, vol. 127(C), pages 382-391.
    18. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    19. Almendros, A.I. & Blázquez, G. & Ronda, A. & Martín-Lara, M.A. & Calero, M., 2017. "Study of the catalytic effect of nickel in the thermal decomposition of olive tree pruning via thermogravimetric analysis," Renewable Energy, Elsevier, vol. 103(C), pages 825-835.
    20. Kuznetsov, G.V. & Syrodoy, S.V. & Nigay, N.A. & Maksimov, V.I. & Gutareva, N.Yu., 2021. "Features of the processes of heat and mass transfer when drying a large thickness layer of wood biomass," Renewable Energy, Elsevier, vol. 169(C), pages 498-511.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:129:y:2018:i:pa:p:629-637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.