IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v129y2018ipap141-149.html
   My bibliography  Save this article

Optimization of biodiesel production from wet microalgal biomass by direct transesterification using the surface response methodology

Author

Listed:
  • Macías-Sánchez, M.D.
  • Robles-Medina, A.
  • Jiménez-Callejón, M.J.
  • Hita-Peña, E.
  • Estéban-Cerdán, L.
  • González-Moreno, P.A.
  • Navarro-López, E.
  • Molina-Grima, E.

Abstract

The production of fatty acid methyl esters (FAMEs, biodiesel) was optimized from wet Nannochloropsis gaditana microalgal biomass (81.8 wt% water and 28.1 wt% saponifiable lipids, SLs, from the dry biomass). FAME production was carried out by direct acid-catalyzed methylation of the SLs from the microalgal biomass and FAME extraction with hexane. A three-variable, three-level Box-Behnken design (BBD) was applied to optimize the sulphuric acid (catalyst) concentration, the methanol/SL ratio and the hexane/SL ratio. The best FAME yield was obtained with a methanol/SL ratio of 254 mL/g, a sulphuric acid concentration of 3.7% (v/v) and a hexane/SL ratio of 107.7 mL/g at 100 °C and for 105 min. Under these conditions, 100% of the SLs were transformed into FAMEs. Finally, the FAME purity was increased from 78.7 to 86.8 wt% using an adsorption treatment with bentonite.

Suggested Citation

  • Macías-Sánchez, M.D. & Robles-Medina, A. & Jiménez-Callejón, M.J. & Hita-Peña, E. & Estéban-Cerdán, L. & González-Moreno, P.A. & Navarro-López, E. & Molina-Grima, E., 2018. "Optimization of biodiesel production from wet microalgal biomass by direct transesterification using the surface response methodology," Renewable Energy, Elsevier, vol. 129(PA), pages 141-149.
  • Handle: RePEc:eee:renene:v:129:y:2018:i:pa:p:141-149
    DOI: 10.1016/j.renene.2018.06.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118306311
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.06.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cerón-García, M.C. & Macías-Sánchez, M.D. & Sánchez-Mirón, A. & García-Camacho, F. & Molina-Grima, E., 2013. "A process for biodiesel production involving the heterotrophic fermentation of Chlorella protothecoides with glycerol as the carbon source," Applied Energy, Elsevier, vol. 103(C), pages 341-349.
    2. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    3. Hita Peña, Estrella & Robles Medina, Alfonso & Jiménez Callejón, María J. & Macías Sánchez, María D. & Esteban Cerdán, Luis & González Moreno, Pedro A. & Molina Grima, Emilio, 2015. "Extraction of free fatty acids from wet Nannochloropsis gaditana biomass for biodiesel production," Renewable Energy, Elsevier, vol. 75(C), pages 366-373.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kavitha, S. & Gajendran, T. & Saranya, K. & Selvakumar, P. & Manivasagan, V., 2021. "Study on consolidated bioprocessing of pre-treated Nannochloropsis gaditana biomass into ethanol under optimal strategy," Renewable Energy, Elsevier, vol. 172(C), pages 440-452.
    2. Muhammad, Gul & Potchamyou Ngatcha, Ange Douglas & Lv, Yongkun & Xiong, Wenlong & El-Badry, Yaser A. & Asmatulu, Eylem & Xu, Jingliang & Alam, Md Asraful, 2022. "Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network," Renewable Energy, Elsevier, vol. 184(C), pages 753-764.
    3. Vasaki E, Madhu & Karri, Rama Rao & Ravindran, Gobinath & Paramasivan, Balasubramanian, 2021. "Predictive capability evaluation and optimization of sustainable biodiesel production from oleaginous biomass grown on pulp and paper industrial wastewater," Renewable Energy, Elsevier, vol. 168(C), pages 204-215.
    4. Ma, Yichao & Wang, Pixiang & Wang, Yi & Liu, Shaoyang & Wang, Qichen & Wang, Yifen, 2020. "Fermentable sugar production from wet microalgae residual after biodiesel production assisted by radio frequency heating," Renewable Energy, Elsevier, vol. 155(C), pages 827-836.
    5. Che Zhao & Hongyuan Chen & Xiao Wu & Rui Shan, 2023. "Exploiting the Waste Biomass of Durian Shell as a Heterogeneous Catalyst for Biodiesel Production at Room Temperature," IJERPH, MDPI, vol. 20(3), pages 1-10, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cancela, A. & Pérez, L. & Febrero, A. & Sánchez, A. & Salgueiro, J.L. & Ortiz, L., 2019. "Exploitation of Nannochloropsis gaditana biomass for biodiesel and pellet production," Renewable Energy, Elsevier, vol. 133(C), pages 725-730.
    2. Kwak, Minsoo & Kim, Donghyun & Kim, Sungwhan & Lee, Hansol & Chang, Yong Keun, 2020. "Solvent screening and process optimization for high shear-assisted lipid extraction from wet cake of Nannochloropsis sp," Renewable Energy, Elsevier, vol. 149(C), pages 1395-1405.
    3. kumar, Mukesh & Sharma, Mahendra Pal, 2016. "Selection of potential oils for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1129-1138.
    4. Enamala, Manoj Kumar & Enamala, Swapnika & Chavali, Murthy & Donepudi, Jagadish & Yadavalli, Rajasri & Kolapalli, Bhulakshmi & Aradhyula, Tirumala Vasu & Velpuri, Jeevitha & Kuppam, Chandrasekhar, 2018. "Production of biofuels from microalgae - A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 49-68.
    5. Kumar, Mukesh & Sharma, M.P., 2015. "Assessment of potential of oils for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 814-823.
    6. Wang, Songmei & Zhu, Johnny & Dai, Lingmei & Zhao, Xuebing & Liu, Dehua & Du, Wei, 2016. "A novel process on lipid extraction from microalgae for biodiesel production," Energy, Elsevier, vol. 115(P1), pages 963-968.
    7. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Filho, Rubens Maciel, 2020. "Biodiesel production from microalgae by direct transesterification using green solvents," Renewable Energy, Elsevier, vol. 160(C), pages 1283-1294.
    8. Behnam Tabatabai & Afua Adusei & Alok Kumar Shrivastava & Prashant Kumar Singh & Viji Sitther, 2020. "Nitrogen Deprivation in Fremyella diplosiphon Augments Lipid Production without Affecting Growth," Energies, MDPI, vol. 13(21), pages 1-12, November.
    9. Peralta-Ruiz, Y. & González-Delgado, A.-D. & Kafarov, V., 2013. "Evaluation of alternatives for microalgae oil extraction based on exergy analysis," Applied Energy, Elsevier, vol. 101(C), pages 226-236.
    10. Terigar, Beatrice G. & Theegala, Chandra S., 2014. "Investigating the interdependence between cell density, biomass productivity, and lipid productivity to maximize biofuel feedstock production from outdoor microalgal cultures," Renewable Energy, Elsevier, vol. 64(C), pages 238-243.
    11. Rahman, Syed Masiur & Khondaker, A.N., 2012. "Mitigation measures to reduce greenhouse gas emissions and enhance carbon capture and storage in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2446-2460.
    12. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    13. Maity, Jyoti Prakash & Hou, Chia-Peng & Majumder, Dip & Bundschuh, Jochen & Kulp, Thomas R. & Chen, Chien-Yen & Chuang, Lu-Te & Nathan Chen, Ching-Nen & Jean, Jiin-Shuh & Yang, Tsui-Chu & Chen, Chien-, 2014. "The production of biofuel and bioelectricity associated with wastewater treatment by green algae," Energy, Elsevier, vol. 78(C), pages 94-103.
    14. Patel, Akash & Gami, Bharat & Patel, Pankaj & Patel, Beena, 2017. "Microalgae: Antiquity to era of integrated technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 535-547.
    15. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    16. Kumar, Ravi Ranjan & Sarkar, Debasis & Sen, Ramkrishna, 2024. "Simultaneously maximizing microalgal biomass and lipid productivities by machine learning driven modeling, global sensitivity analysis and multi-objective optimization for sustainable biodiesel produc," Applied Energy, Elsevier, vol. 358(C).
    17. Dębowski, Marcin & Zieliński, Marcin & Grala, Anna & Dudek, Magda, 2013. "Algae biomass as an alternative substrate in biogas production technologies—Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 596-604.
    18. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    19. Thi Dong Phuong Nguyen & Duc Huy Nguyen & Jun Wei Lim & Chih-Kai Chang & Hui Yi Leong & Thi Ngoc Thu Tran & Thi Bich Hau Vu & Thi Trung Chinh Nguyen & Pau Loke Show, 2019. "Investigation of the Relationship between Bacteria Growth and Lipid Production Cultivating of Microalgae Chlorella Vulgaris in Seafood Wastewater," Energies, MDPI, vol. 12(12), pages 1-12, June.
    20. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:129:y:2018:i:pa:p:141-149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.