IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v34y2009i11p1792-1796.html
   My bibliography  Save this article

A comparative study to estimate daily diffuse solar radiation over India

Author

Listed:
  • Pandey, Chanchal Kumar
  • Katiyar, A.K.

Abstract

A detailed study of monthly average daily diffuse solar radiation for selected Indian locations have been performed using five years (2001–2005) measured data. The data of four prominent locations (Jodhpur, Calcutta, Bombay and Pune), representing varying weather conditions of the entire country, have been taken for the present study. The correlations between the diffuse fraction (Hd/H) and the sunshine fraction (S/S0) have been developed using regression analysis method for each selected location as well as for all Indian locations, we call it All India Correlation (AIC). The results obtained from present AIC are well compared with the measured data along with the estimates of Liu and Jordan, Gopinathan and Iqbal for different locations. The comparisons between various data conclude that AIC can be used to estimate diffuse fraction for any location in India. For further validation and to show the accuracy of present correlations, statistical tests of root mean square error (RMSE), mean bias error (MBE) and mean percentage error (MPE) are also performed.

Suggested Citation

  • Pandey, Chanchal Kumar & Katiyar, A.K., 2009. "A comparative study to estimate daily diffuse solar radiation over India," Energy, Elsevier, vol. 34(11), pages 1792-1796.
  • Handle: RePEc:eee:energy:v:34:y:2009:i:11:p:1792-1796
    DOI: 10.1016/j.energy.2009.07.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209003132
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.07.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elminir, Hamdy K., 2007. "Experimental and theoretical investigation of diffuse solar radiation: Data and models quality tested for Egyptian sites," Energy, Elsevier, vol. 32(1), pages 73-82.
    2. Gopinathan, K.K. & Soler, Alfonso, 1995. "Diffuse radiation models and monthly-average, daily, diffuse data for a wide latitude range," Energy, Elsevier, vol. 20(7), pages 657-667.
    3. Elminir, Hamdy K. & Azzam, Yosry A. & Younes, Farag I., 2007. "Prediction of hourly and daily diffuse fraction using neural network, as compared to linear regression models," Energy, Elsevier, vol. 32(8), pages 1513-1523.
    4. Kumar, Ravinder & Umanand, L., 2005. "Estimation of global radiation using clearness index model for sizing photovoltaic system," Renewable Energy, Elsevier, vol. 30(15), pages 2221-2233.
    5. Trabea, A.A, 1999. "Technical note a multiple linear correlation for diffuse radiation from global solar radiation and sunshine data over Egypt," Renewable Energy, Elsevier, vol. 17(3), pages 411-420.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Despotovic, Milan & Nedic, Vladimir & Despotovic, Danijela & Cvetanovic, Slobodan, 2016. "Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 246-260.
    2. Sabzpooshani, Majid & Mohammadi, Kasra, 2014. "Establishing new empirical models for predicting monthly mean horizontal diffuse solar radiation in city of Isfahan, Iran," Energy, Elsevier, vol. 69(C), pages 571-577.
    3. Elminir, Hamdy K. & Azzam, Yosry A. & Younes, Farag I., 2007. "Prediction of hourly and daily diffuse fraction using neural network, as compared to linear regression models," Energy, Elsevier, vol. 32(8), pages 1513-1523.
    4. Ayodele, T.R. & Ogunjuyigbe, A.S.O., 2015. "Prediction of monthly average global solar radiation based on statistical distribution of clearness index," Energy, Elsevier, vol. 90(P2), pages 1733-1742.
    5. Jiang, Yingni, 2008. "Prediction of monthly mean daily diffuse solar radiation using artificial neural networks and comparison with other empirical models," Energy Policy, Elsevier, vol. 36(10), pages 3833-3837, October.
    6. Notton, Gilles & Paoli, Christophe & Vasileva, Siyana & Nivet, Marie Laure & Canaletti, Jean-Louis & Cristofari, Christian, 2012. "Estimation of hourly global solar irradiation on tilted planes from horizontal one using artificial neural networks," Energy, Elsevier, vol. 39(1), pages 166-179.
    7. Chen, Ji-Long & He, Lei & Chen, Qiao & Lv, Ming-Quan & Zhu, Hong-Lin & Wen, Zhao-Fei & Wu, Sheng-Jun, 2019. "Study of monthly mean daily diffuse and direct beam radiation estimation with MODIS atmospheric product," Renewable Energy, Elsevier, vol. 132(C), pages 221-232.
    8. Lu, Ning & Qin, Jun & Yang, Kun & Sun, Jiulin, 2011. "A simple and efficient algorithm to estimate daily global solar radiation from geostationary satellite data," Energy, Elsevier, vol. 36(5), pages 3179-3188.
    9. Elminir, Hamdy K., 2007. "Experimental and theoretical investigation of diffuse solar radiation: Data and models quality tested for Egyptian sites," Energy, Elsevier, vol. 32(1), pages 73-82.
    10. Shamshirband, Shahaboddin & Mohammadi, Kasra & Khorasanizadeh, Hossein & Yee, Por Lip & Lee, Malrey & Petković, Dalibor & Zalnezhad, Erfan, 2016. "Estimating the diffuse solar radiation using a coupled support vector machine–wavelet transform model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 428-435.
    11. Bakirci, Kadir, 2015. "Models for the estimation of diffuse solar radiation for typical cities in Turkey," Energy, Elsevier, vol. 82(C), pages 827-838.
    12. Khorasanizadeh, Hossein & Mohammadi, Kasra, 2016. "Diffuse solar radiation on a horizontal surface: Reviewing and categorizing the empirical models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 338-362.
    13. Behrang, M.A. & Assareh, E. & Noghrehabadi, A.R. & Ghanbarzadeh, A., 2011. "New sunshine-based models for predicting global solar radiation using PSO (particle swarm optimization) technique," Energy, Elsevier, vol. 36(5), pages 3036-3049.
    14. Jiang, Hou & Lu, Ning & Qin, Jun & Tang, Wenjun & Yao, Ling, 2019. "A deep learning algorithm to estimate hourly global solar radiation from geostationary satellite data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    15. Mohammadi, Kasra & Shamshirband, Shahaboddin & Petković, Dalibor & Khorasanizadeh, Hossein, 2016. "Determining the most important variables for diffuse solar radiation prediction using adaptive neuro-fuzzy methodology; case study: City of Kerman, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1570-1579.
    16. Makade, Rahul G. & Chakrabarti, Siddharth & Jamil, Basharat & Sakhale, C.N., 2020. "Estimation of global solar radiation for the tropical wet climatic region of India: A theory of experimentation approach," Renewable Energy, Elsevier, vol. 146(C), pages 2044-2059.
    17. Harshavardhan Palahalli & Paolo Maffezzoni & Giambattista Gruosso, 2021. "Gaussian Copula Methodology to Model Photovoltaic Generation Uncertainty Correlation in Power Distribution Networks," Energies, MDPI, vol. 14(9), pages 1-16, April.
    18. Anjorin O.F. & Utah E.U & Likita M.S, 2014. "Estimation of Hourly Photo synthetically- Active Radiation (PAR) From Hourly Global Solar Radiation (GSR) In Jos, Nigeria," Asian Review of Environmental and Earth Sciences, Asian Online Journal Publishing Group, vol. 1(2), pages 43-50.
    19. Mondol, Jayanta Deb & Yohanis, Yigzaw G. & Norton, Brian, 2008. "Solar radiation modelling for the simulation of photovoltaic systems," Renewable Energy, Elsevier, vol. 33(5), pages 1109-1120.
    20. Muhammad Umar Afzaal & Intisar Ali Sajjad & Ahmed Bilal Awan & Kashif Nisar Paracha & Muhammad Faisal Nadeem Khan & Abdul Rauf Bhatti & Muhammad Zubair & Waqas ur Rehman & Salman Amin & Shaikh Saaqib , 2020. "Probabilistic Generation Model of Solar Irradiance for Grid Connected Photovoltaic Systems Using Weibull Distribution," Sustainability, MDPI, vol. 12(6), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:34:y:2009:i:11:p:1792-1796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.