IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v224y2024ics0960148124001988.html
   My bibliography  Save this article

CFD simulation of tidal-stream turbines in a compact array

Author

Listed:
  • Apsley, David D.

Abstract

An actuator-line RANS CFD model is used to simulate loads (thrust, power and flapwise bending moment) on tidal-stream turbines. Results are compared with other groups’ reported laboratory measurements for an individual 1/15-scale turbine in a rectangular flume at IFREMER and a compact 3-turbine array of similar turbines in the FloWave tank at the University of Edinburgh.

Suggested Citation

  • Apsley, David D., 2024. "CFD simulation of tidal-stream turbines in a compact array," Renewable Energy, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124001988
    DOI: 10.1016/j.renene.2024.120133
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124001988
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Gang & Zhu, Weidong, 2023. "Tidal current energy harvesting technologies: A review of current status and life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    2. Donald R. Noble & Samuel Draycott & Anup Nambiar & Brian G. Sellar & Jeffrey Steynor & Aristides Kiprakis, 2020. "Experimental Assessment of Flow, Performance, and Loads for Tidal Turbines in a Closely-Spaced Array," Energies, MDPI, vol. 13(8), pages 1-17, April.
    3. Chawdhary, Saurabh & Hill, Craig & Yang, Xiaolei & Guala, Michele & Corren, Dean & Colby, Jonathan & Sotiropoulos, Fotis, 2017. "Wake characteristics of a TriFrame of axial-flow hydrokinetic turbines," Renewable Energy, Elsevier, vol. 109(C), pages 332-345.
    4. Waters, Shaun & Aggidis, George, 2016. "A World First: Swansea Bay Tidal lagoon in review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 916-921.
    5. Nuernberg, M. & Tao, L., 2018. "Experimental study of wake characteristics in tidal turbine arrays," Renewable Energy, Elsevier, vol. 127(C), pages 168-181.
    6. Gaurier, Benoît & Carlier, Clément & Germain, Grégory & Pinon, Grégory & Rivoalen, Elie, 2020. "Three tidal turbines in interaction: An experimental study of turbulence intensity effects on wakes and turbine performance," Renewable Energy, Elsevier, vol. 148(C), pages 1150-1164.
    7. Bahaj, A.S. & Molland, A.F. & Chaplin, J.R. & Batten, W.M.J., 2007. "Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank," Renewable Energy, Elsevier, vol. 32(3), pages 407-426.
    8. Musa, Mirko & Hill, Craig & Guala, Michele, 2019. "Interaction between hydrokinetic turbine wakes and sediment dynamics: array performance and geomorphic effects under different siting strategies and sediment transport conditions," Renewable Energy, Elsevier, vol. 138(C), pages 738-753.
    9. Mycek, Paul & Gaurier, Benoît & Germain, Grégory & Pinon, Grégory & Rivoalen, Elie, 2014. "Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine," Renewable Energy, Elsevier, vol. 66(C), pages 729-746.
    10. Badoe, Charles E. & Edmunds, Matt & Williams, Alison J. & Nambiar, Anup & Sellar, Brian & Kiprakis, Aristides & Masters, Ian, 2022. "Robust validation of a generalised actuator disk CFD model for tidal turbine analysis using the FloWave ocean energy research facility," Renewable Energy, Elsevier, vol. 190(C), pages 232-250.
    11. Mirko Musa & Craig Hill & Fotis Sotiropoulos & Michele Guala, 2018. "Performance and resilience of hydrokinetic turbine arrays under large migrating fluvial bedforms," Nature Energy, Nature, vol. 3(10), pages 839-846, October.
    12. Tedds, S.C. & Owen, I. & Poole, R.J., 2014. "Near-wake characteristics of a model horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 63(C), pages 222-235.
    13. Payne, Grégory S. & Stallard, Tim & Martinez, Rodrigo, 2017. "Design and manufacture of a bed supported tidal turbine model for blade and shaft load measurement in turbulent flow and waves," Renewable Energy, Elsevier, vol. 107(C), pages 312-326.
    14. Stansby, Peter & Stallard, Tim, 2016. "Fast optimisation of tidal stream turbine positions for power generation in small arrays with low blockage based on superposition of self-similar far-wake velocity deficit profiles," Renewable Energy, Elsevier, vol. 92(C), pages 366-375.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Craig Hill & Vincent S. Neary & Michele Guala & Fotis Sotiropoulos, 2020. "Performance and Wake Characterization of a Model Hydrokinetic Turbine: The Reference Model 1 (RM1) Dual Rotor Tidal Energy Converter," Energies, MDPI, vol. 13(19), pages 1-21, October.
    2. Chen, Yaling & Wang, Dayu & Wang, Dangwei, 2024. "The flow field within a staggered hydrokinetic turbine array," Renewable Energy, Elsevier, vol. 224(C).
    3. Di Felice, Fabio & Capone, Alessandro & Romano, Giovanni Paolo & Alves Pereira, Francisco, 2023. "Experimental study of the turbulent flow in the wake of a horizontal axis tidal current turbine," Renewable Energy, Elsevier, vol. 212(C), pages 17-34.
    4. Chen, Yaling & Lin, Binliang & Sun, Jian & Guo, Jinxi & Wu, Wenlong, 2019. "Hydrodynamic effects of the ratio of rotor diameter to water depth: An experimental study," Renewable Energy, Elsevier, vol. 136(C), pages 331-341.
    5. Jiyong Lee & Mirko Musa & Chris Feist & Jinjin Gao & Lian Shen & Michele Guala, 2019. "Wake Characteristics and Power Performance of a Drag-Driven in-Bank Vertical Axis Hydrokinetic Turbine," Energies, MDPI, vol. 12(19), pages 1-20, September.
    6. Clemente Gotelli & Mirko Musa & Michele Guala & Cristián Escauriaza, 2019. "Experimental and Numerical Investigation of Wake Interactions of Marine Hydrokinetic Turbines," Energies, MDPI, vol. 12(16), pages 1-17, August.
    7. Faizan, Muhammad & Badshah, Saeed & Badshah, Mujahid & Haider, Basharat Ali, 2022. "Performance and wake analysis of horizontal axis tidal current turbine using Improved Delayed Detached Eddy Simulation," Renewable Energy, Elsevier, vol. 184(C), pages 740-752.
    8. Zhang, Yuquan & Zang, Wei & Zheng, Jinhai & Cappietti, Lorenzo & Zhang, Jisheng & Zheng, Yuan & Fernandez-Rodriguez, E., 2021. "The influence of waves propagating with the current on the wake of a tidal stream turbine," Applied Energy, Elsevier, vol. 290(C).
    9. Vinod, Ashwin & Banerjee, Arindam, 2019. "Performance and near-wake characterization of a tidal current turbine in elevated levels of free stream turbulence," Applied Energy, Elsevier, vol. 254(C).
    10. Federico Attene & Francesco Balduzzi & Alessandro Bianchini & M. Sergio Campobasso, 2020. "Using Experimentally Validated Navier-Stokes CFD to Minimize Tidal Stream Turbine Power Losses Due to Wake/Turbine Interactions," Sustainability, MDPI, vol. 12(21), pages 1-26, October.
    11. Chen, Long & Yao, Yu & Wang, Zhi-liang, 2020. "Development and validation of a prediction model for the multi-wake of tidal stream turbines," Renewable Energy, Elsevier, vol. 155(C), pages 800-809.
    12. Lin, Jie & Lin, Binliang & Sun, Jian & Chen, Yaling, 2021. "Wake structure and mechanical energy transformation induced by a horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 171(C), pages 1344-1356.
    13. Chen, Yaling & Lin, Binliang & Liang, Dongfang, 2023. "Interactions between approaching flow and hydrokinetic turbines in a staggered layout," Renewable Energy, Elsevier, vol. 218(C).
    14. Vinod, Ashwin & Han, Cong & Banerjee, Arindam, 2021. "Tidal turbine performance and near-wake characteristics in a sheared turbulent inflow," Renewable Energy, Elsevier, vol. 175(C), pages 840-852.
    15. Gao, Jinjin & Liu, Han & Lee, Jiyong & Zheng, Yuan & Guala, Michele & Shen, Lian, 2022. "Large-eddy simulation and Co-Design strategy for a drag-type vertical axis hydrokinetic turbine in open channel flows," Renewable Energy, Elsevier, vol. 181(C), pages 1305-1316.
    16. Badoe, Charles E. & Edmunds, Matt & Williams, Alison J. & Nambiar, Anup & Sellar, Brian & Kiprakis, Aristides & Masters, Ian, 2022. "Robust validation of a generalised actuator disk CFD model for tidal turbine analysis using the FloWave ocean energy research facility," Renewable Energy, Elsevier, vol. 190(C), pages 232-250.
    17. Musa, Mirko & Hill, Craig & Guala, Michele, 2019. "Interaction between hydrokinetic turbine wakes and sediment dynamics: array performance and geomorphic effects under different siting strategies and sediment transport conditions," Renewable Energy, Elsevier, vol. 138(C), pages 738-753.
    18. Zhang, Jisheng & Zhou, Yudi & Lin, Xiangfeng & Wang, Guohui & Guo, Yakun & Chen, Hao, 2022. "Experimental investigation on wake and thrust characteristics of a twin-rotor horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 195(C), pages 701-715.
    19. Mujahid Badshah & Saeed Badshah & James VanZwieten & Sakhi Jan & Muhammad Amir & Suheel Abdullah Malik, 2019. "Coupled Fluid-Structure Interaction Modelling of Loads Variation and Fatigue Life of a Full-Scale Tidal Turbine under the Effect of Velocity Profile," Energies, MDPI, vol. 12(11), pages 1-22, June.
    20. Allmark, Matthew & Ellis, Robert & Lloyd, Catherine & Ordonez-Sanchez, Stephanie & Johannesen, Kate & Byrne, Carl & Johnstone, Cameron & O’Doherty, Tim & Mason-Jones, Allan, 2020. "The development, design and characterisation of a scale model Horizontal Axis Tidal Turbine for dynamic load quantification," Renewable Energy, Elsevier, vol. 156(C), pages 913-930.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124001988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.