IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i12p7001-d833744.html
   My bibliography  Save this article

Optimization Design of Multi-Factor Combination for Power Generation from an Enhanced Geothermal System by Sensitivity Analysis and Orthogonal Test at Qiabuqia Geothermal Area

Author

Listed:
  • Yuan Zhao

    (Powerchina HuaDong Engineering Corporation Limited, Hangzhou 311122, China
    Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (Tianjin University), MOE, Tianjin 300350, China)

  • Lingfeng Shu

    (Powerchina HuaDong Engineering Corporation Limited, Hangzhou 311122, China)

  • Shunyi Chen

    (Powerchina HuaDong Engineering Corporation Limited, Hangzhou 311122, China)

  • Jun Zhao

    (Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (Tianjin University), MOE, Tianjin 300350, China)

  • Liangliang Guo

    (College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

Abstract

In order to explore the optimal mining strategy of a fractured Enhanced Geothermal System (EGS) reservoir, we numerically investigated the influence of seven factors on heat production and conducted an optimization analysis of a multi-factor and multi-level combination by an orthogonal test based on the geological data at the Qiabuqia geothermal field. Seven factors were considered, including five reservoir factors (fracture spacing, fracture permeability, fracture permeability anisotropy, matrix permeability, and heat conductivity) and two operation factors (injected section length and injection rate). The results show that injection rate and fracture permeability have the greatest influence on production performance. Different factor combinations have a great influence on the productivity. The multi-factor and multi-level combination optimization is needed, and the optimization scheme of the EGS can be achieved through the orthogonal test and range analysis. The order of influence degree on the power generation is injection rate > fracture permeability > fracture permeability anisotropy > injected section length > matrix permeability > fracture spacing > heat conductivity. The order of influence degree on the coefficient of performance of the EGS is fracture permeability > injection rate > injected section length > fracture permeability anisotropy > matrix permeability > fracture spacing > heat conductivity. For reservoir stimulation, the stratum with dense natural fractures should be selected as the target EGS reservoir. It is not advisable to acidify the EGS reservoir too much to widen the apertures of the natural fractures. Fracture permeability anisotropy will increase pump energy consumption, but this adverse effect can be greatly reduced if the other parameters are well matched. Matrix permeability and heat conductivity may not be used as indicators in selecting a target reservoir. For project operation, the injected section length should be as long as possible. The injection rate plays a major role in all factors. Special attention should be paid to the value of the injection rate, which should not be too large. The appropriate injection temperature should be determined in accordance with the water source condition and the engineering requirement. If a commercial rate (100 kg/s) is to be obtained, the permeability of the reservoir fracture network needs to be stimulated to be higher. Meanwhile, in order to ensure that the production temperature is both high and stable, it is necessary to further increase the volume of the EGS reservoir.

Suggested Citation

  • Yuan Zhao & Lingfeng Shu & Shunyi Chen & Jun Zhao & Liangliang Guo, 2022. "Optimization Design of Multi-Factor Combination for Power Generation from an Enhanced Geothermal System by Sensitivity Analysis and Orthogonal Test at Qiabuqia Geothermal Area," Sustainability, MDPI, vol. 14(12), pages 1-35, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7001-:d:833744
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/12/7001/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/12/7001/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hofmann, Hannes & Weides, Simon & Babadagli, Tayfun & Zimmermann, Günter & Moeck, Inga & Majorowicz, Jacek & Unsworth, Martyn, 2014. "Potential for enhanced geothermal systems in Alberta, Canada," Energy, Elsevier, vol. 69(C), pages 578-591.
    2. Gong, Facheng & Guo, Tiankui & Sun, Wei & Li, Zhaomin & Yang, Bin & Chen, Yimei & Qu, Zhanqing, 2020. "Evaluation of geothermal energy extraction in Enhanced Geothermal System (EGS) with multiple fracturing horizontal wells (MFHW)," Renewable Energy, Elsevier, vol. 151(C), pages 1339-1351.
    3. Yu, Likui & Wu, Xiaotian & Hassan, N.M.S. & Wang, Yadan & Ma, Weiwu & Liu, Gang, 2020. "Modified zipper fracturing in enhanced geothermal system reservoir and heat extraction optimization via orthogonal design," Renewable Energy, Elsevier, vol. 161(C), pages 373-385.
    4. Zhang, Yu & Zhang, Yanjun & Zhou, Ling & Lei, Zhihong & Guo, Liangliang & Zhou, Jian, 2022. "Reservoir stimulation design and evaluation of heat exploitation of a two-horizontal-well enhanced geothermal system (EGS) in the Zhacang geothermal field, Northwest China," Renewable Energy, Elsevier, vol. 183(C), pages 330-350.
    5. Guo, Liang-Liang & Zhang, Yong-Bo & Zhang, Yan-Jun & Yu, Zi-Wang & Zhang, Jia-Ning, 2018. "Experimental investigation of granite properties under different temperatures and pressures and numerical analysis of damage effect in enhanced geothermal system," Renewable Energy, Elsevier, vol. 126(C), pages 107-125.
    6. Cheng, Wen-Long & Wang, Chang-Long & Nian, Yong-Le & Han, Bing-Bing & Liu, Jian, 2016. "Analysis of influencing factors of heat extraction from enhanced geothermal systems considering water losses," Energy, Elsevier, vol. 115(P1), pages 274-288.
    7. Zeng, Yu-Chao & Su, Zheng & Wu, Neng-You, 2013. "Numerical simulation of heat production potential from hot dry rock by water circulating through two horizontal wells at Desert Peak geothermal field," Energy, Elsevier, vol. 56(C), pages 92-107.
    8. Zhou, Dejian & Tatomir, Alexandru & Niemi, Auli & Tsang, Chin-Fu & Sauter, Martin, 2022. "Study on the influence of randomly distributed fracture aperture in a fracture network on heat production from an enhanced geothermal system (EGS)," Energy, Elsevier, vol. 250(C).
    9. Lin, Rui & Diao, Xiaoyu & Ma, Tiancai & Tang, Shenghao & Chen, Liang & Liu, Dengcheng, 2019. "Optimized microporous layer for improving polymer exchange membrane fuel cell performance using orthogonal test design," Applied Energy, Elsevier, vol. 254(C).
    10. Zeng, Yu-Chao & Wu, Neng-You & Su, Zheng & Wang, Xiao-Xing & Hu, Jian, 2013. "Numerical simulation of heat production potential from hot dry rock by water circulating through a novel single vertical fracture at Desert Peak geothermal field," Energy, Elsevier, vol. 63(C), pages 268-282.
    11. Asai, Pranay & Panja, Palash & McLennan, John & Deo, Milind, 2019. "Effect of different flow schemes on heat recovery from Enhanced Geothermal Systems (EGS)," Energy, Elsevier, vol. 175(C), pages 667-676.
    12. Soltani, M. & Moradi Kashkooli, Farshad & Souri, Mohammad & Rafiei, Behnam & Jabarifar, Mohammad & Gharali, Kobra & Nathwani, Jatin S., 2021. "Environmental, economic, and social impacts of geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    13. Huang, Xiaoxue & Zhu, Jialing & Niu, Chengke & Li, Jun & Hu, Xia & Jin, Xianpeng, 2014. "Heat extraction and power production forecast of a prospective Enhanced Geothermal System site in Songliao Basin, China," Energy, Elsevier, vol. 75(C), pages 360-370.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ning Li & Heping Xie & Ziqi Gao & Cunbao Li, 2022. "Study on the Hydraulic Fracturing Failure Behaviour of Granite and Its Comparison with Gas Fracturing," Sustainability, MDPI, vol. 14(21), pages 1-19, November.
    2. Xue, Zhenqian & Ma, Haoming & Wei, Yizheng & Wu, Wei & Sun, Zhe & Chai, Maojie & Zhang, Chi & Chen, Zhangxin, 2024. "Integrated technological and economic feasibility comparisons of enhanced geothermal systems associated with carbon storage," Applied Energy, Elsevier, vol. 359(C).
    3. Haiyang Jiang & Liangliang Guo & Fengxin Kang & Fugang Wang & Yanling Cao & Zhe Sun & Meng Shi, 2023. "Geothermal Characteristics and Productivity Potential of a Super-Thick Shallow Granite-Type Enhanced Geothermal System: A Case Study in Wendeng Geothermal Field, China," Sustainability, MDPI, vol. 15(4), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang Gao & Tailu Li & Yao Zhang & Xiangfei Kong & Nan Meng, 2022. "A Review of Simulation Models of Heat Extraction for a Geothermal Reservoir in an Enhanced Geothermal System," Energies, MDPI, vol. 15(19), pages 1-23, September.
    2. Haiyang Jiang & Liangliang Guo & Fengxin Kang & Fugang Wang & Yanling Cao & Zhe Sun & Meng Shi, 2023. "Geothermal Characteristics and Productivity Potential of a Super-Thick Shallow Granite-Type Enhanced Geothermal System: A Case Study in Wendeng Geothermal Field, China," Sustainability, MDPI, vol. 15(4), pages 1-25, February.
    3. Akdas, Satuk Bugra & Onur, Mustafa, 2022. "Analytical solutions for predicting and optimizing geothermal energy extraction from an enhanced geothermal system with a multiple hydraulically fractured horizontal-well doublet," Renewable Energy, Elsevier, vol. 181(C), pages 567-580.
    4. Xue, Zhenqian & Zhang, Kai & Zhang, Chi & Ma, Haoming & Chen, Zhangxin, 2023. "Comparative data-driven enhanced geothermal systems forecasting models: A case study of Qiabuqia field in China," Energy, Elsevier, vol. 280(C).
    5. Yuchao Zeng & Liansheng Tang & Nengyou Wu & Jing Song & Yifei Cao, 2017. "Orthogonal Test Analysis on Conditions Affecting Electricity Generation Performance of an Enhanced Geothermal System at Yangbajing Geothermal Field," Energies, MDPI, vol. 10(12), pages 1-17, December.
    6. Zheng, Jun & Li, Peng & Dou, Bin & Fan, Tao & Tian, Hong & Lai, Xiaotian, 2022. "Impact research of well layout schemes and fracture parameters on heat production performance of enhanced geothermal system considering water cooling effect," Energy, Elsevier, vol. 255(C).
    7. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2022. "Utilizing geothermal energy from enhanced geothermal systems as a heat source for oil sands separation: A numerical evaluation," Energy, Elsevier, vol. 238(PA).
    8. Zeng, Yu-Chao & Zhan, Jie-Min & Wu, Neng-You & Luo, Ying-Ying & Cai, Wen-Hao, 2016. "Numerical investigation of electricity generation potential from fractured granite reservoir through a single vertical well at Yangbajing geothermal field," Energy, Elsevier, vol. 114(C), pages 24-39.
    9. Chen, Tairu & Liu, Gang & Liao, Shengming, 2019. "Impacts of boundary conditions on reservoir numerical simulation and performance prediction of enhanced geothermal systems," Energy, Elsevier, vol. 181(C), pages 202-213.
    10. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Liu, Xuemei & Liu, Hongliang, 2020. "Analysis on the heat extraction performance of multi-well injection enhanced geothermal system based on leaf-like bifurcated fracture networks," Energy, Elsevier, vol. 213(C).
    11. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu, 2020. "Study on the effect of well layout schemes and fracture parameters on the heat extraction performance of enhanced geothermal system in fractured reservoir," Energy, Elsevier, vol. 202(C).
    12. Ding, Junfeng & Wang, Shimin, 2018. "2D modeling of well array operating enhanced geothermal system," Energy, Elsevier, vol. 162(C), pages 918-932.
    13. Qiao, Mingzheng & Jing, Zefeng & Feng, Chenchen & Li, Minghui & Chen, Cheng & Zou, Xupeng & Zhou, Yujuan, 2024. "Review on heat extraction systems of hot dry rock: Classifications, benefits, limitations, research status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    14. Moussa, Tamer & Dehghanpour, Hassan, 2022. "Evaluating geothermal energy production from suspended oil and gas wells by using data mining," Renewable Energy, Elsevier, vol. 196(C), pages 1294-1307.
    15. Zhang, Qitao & Dahi Taleghani, Arash, 2023. "Autonomous fracture flow tunning to enhance efficiency of fractured geothermal systems," Energy, Elsevier, vol. 281(C).
    16. Zhang, Yan-Jun & Guo, Liang-Liang & Li, Zheng-Wei & Yu, Zi-Wang & Xu, Tian-Fu & Lan, Cheng-Yu, 2015. "Electricity generation and heating potential from enhanced geothermal system in Songliao Basin, China: Different reservoir stimulation strategies for tight rock and naturally fractured formations," Energy, Elsevier, vol. 93(P2), pages 1860-1885.
    17. Wang, Chang-Long & Cheng, Wen-Long & Nian, Yong-Le & Yang, Lei & Han, Bing-Bing & Liu, Ming-Hou, 2018. "Simulation of heat extraction from CO2-based enhanced geothermal systems considering CO2 sequestration," Energy, Elsevier, vol. 142(C), pages 157-167.
    18. Asai, Pranay & Panja, Palash & McLennan, John & Deo, Milind, 2019. "Effect of different flow schemes on heat recovery from Enhanced Geothermal Systems (EGS)," Energy, Elsevier, vol. 175(C), pages 667-676.
    19. Li, Xinxin & Li, Chengyu & Gong, Wenping & Zhang, Yanjie & Wang, Junchao, 2023. "Probabilistic analysis of heat extraction performance in enhanced geothermal system based on a DFN-based modeling scheme," Energy, Elsevier, vol. 263(PC).
    20. Lei, Zhihong & Zhang, Yanjun & Yu, Ziwang & Hu, Zhongjun & Li, Liangzhen & Zhang, Senqi & Fu, Lei & Zhou, Ling & Xie, Yangyang, 2019. "Exploratory research into the enhanced geothermal system power generation project: The Qiabuqia geothermal field, Northwest China," Renewable Energy, Elsevier, vol. 139(C), pages 52-70.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7001-:d:833744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.