IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v122y2018icp310-322.html
   My bibliography  Save this article

Study of Jatropha curcas shell bio-oil-diesel blend in VCR CI engine using RSM

Author

Listed:
  • Patel, Himanshu
  • Rajai, Vikram
  • Das, Prasanta
  • Charola, Samir
  • Mudgal, Anurag
  • Maiti, Subarna

Abstract

Jatropha curcas shell was slow pyrolyzed in pilot-scale fixed bed reactor at 500 °C. Fuel properties of moisture free bio-oil (MFBO) and diesel were compared, which advocated MFBO's applicability in CI engines. Negligible corrosion effect of MFBO was experienced for SS-316 and anodized Al, whereas significant corrosiveness was observed towards Cu. For all three metals, diesel was found to be less corrosive. MFBO was mixed with diesel in proportions of 4%, 8%, 12% and 16% (% v/v) and operating variables of single cylinder VCR engine were optimized using response surface methodology (RSM) with the blends. A central composite design (CCD) was employed to examine the effects of three independent variables - CR, load and blend %, whereas the investigated response variables were brake thermal efficiency (ηBth), brake specific fuel consumption (bsfc), unburnt hydrocarbon (UHC), CO, and CO2. The obtained data were analyzed with the help of Design Expert software. Response prediction was accomplished by following a second-degree polynomial model. The optimum conditions were CR 18.00, load 6.665 kg, and blend 12.22%. Under optimum conditions, the experimental values of response variables were fairly comparable with the model predicted values. The designed model achieved overall desirability of 0.786.

Suggested Citation

  • Patel, Himanshu & Rajai, Vikram & Das, Prasanta & Charola, Samir & Mudgal, Anurag & Maiti, Subarna, 2018. "Study of Jatropha curcas shell bio-oil-diesel blend in VCR CI engine using RSM," Renewable Energy, Elsevier, vol. 122(C), pages 310-322.
  • Handle: RePEc:eee:renene:v:122:y:2018:i:c:p:310-322
    DOI: 10.1016/j.renene.2018.01.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118300818
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.01.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qi, D.H. & Chen, H. & Geng, L.M. & Bian, Y.ZH. & Ren, X.CH., 2010. "Performance and combustion characteristics of biodiesel-diesel-methanol blend fuelled engine," Applied Energy, Elsevier, vol. 87(5), pages 1679-1686, May.
    2. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    3. Guo, Da-liang & Wu, Shu-bin & Liu, Bei & Yin, Xiu-li & Yang, Qing, 2012. "Catalytic effects of NaOH and Na2CO3 additives on alkali lignin pyrolysis and gasification," Applied Energy, Elsevier, vol. 95(C), pages 22-30.
    4. Singh, R.N. & Vyas, D.K. & Srivastava, N.S.L. & Narra, Madhuri, 2008. "SPRERI experience on holistic approach to utilize all parts of Jatropha curcas fruit for energy," Renewable Energy, Elsevier, vol. 33(8), pages 1868-1873.
    5. Chiaramonti, David & Oasmaa, Anja & Solantausta, Yrjö, 2007. "Power generation using fast pyrolysis liquids from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1056-1086, August.
    6. Bridgwater, A. V. & Peacocke, G. V. C., 2000. "Fast pyrolysis processes for biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(1), pages 1-73, March.
    7. Ramadhas, A.S. & Muraleedharan, C. & Jayaraj, S., 2005. "Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil," Renewable Energy, Elsevier, vol. 30(12), pages 1789-1800.
    8. Varuvel, Edwin Geo & Mrad, Nadia & Tazerout, Mohand & Aloui, Fethi, 2012. "Experimental analysis of biofuel as an alternative fuel for diesel engines," Applied Energy, Elsevier, vol. 94(C), pages 224-231.
    9. Kalam, M.A & Husnawan, M & Masjuki, H.H, 2003. "Exhaust emission and combustion evaluation of coconut oil-powered indirect injection diesel engine," Renewable Energy, Elsevier, vol. 28(15), pages 2405-2415.
    10. Shivakumar & Srinivasa Pai, P. & Shrinivasa Rao, B.R., 2011. "Artificial Neural Network based prediction of performance and emission characteristics of a variable compression ratio CI engine using WCO as a biodiesel at different injection timings," Applied Energy, Elsevier, vol. 88(7), pages 2344-2354, July.
    11. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Raghavan, V. & Saravanan, C.G. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2014. "Investigation of evaporation and engine characteristics of pine oil biofuel fumigated in the inlet manifold of a diesel engine," Applied Energy, Elsevier, vol. 115(C), pages 514-524.
    12. Lehto, Jani & Oasmaa, Anja & Solantausta, Yrjö & Kytö, Matti & Chiaramonti, David, 2014. "Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass," Applied Energy, Elsevier, vol. 116(C), pages 178-190.
    13. Varuvel, Edwin Geo & Mrad, Nadia & Tazerout, Mohand & Aloui, Fethi, 2012. "Assessment of liquid fuel (bio-oil) production from waste fish fat and utilization in diesel engine," Applied Energy, Elsevier, vol. 100(C), pages 249-257.
    14. Mwangi, John Kennedy & Lee, Wen-Jhy & Chang, Yu-Cheng & Chen, Chia-Yang & Wang, Lin-Chi, 2015. "An overview: Energy saving and pollution reduction by using green fuel blends in diesel engines," Applied Energy, Elsevier, vol. 159(C), pages 214-236.
    15. Vyas, D.K. & Singh, R.N., 2007. "Feasibility study of Jatropha seed husk as an open core gasifier feedstock," Renewable Energy, Elsevier, vol. 32(3), pages 512-517.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taghipour, Alireza & Ramirez, Jerome A. & Brown, Richard J. & Rainey, Thomas J., 2019. "A review of fractional distillation to improve hydrothermal liquefaction biocrude characteristics; future outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Alherbawi, Mohammad & McKay, Gordon & Mackey, Hamish R. & Al-Ansari, Tareq, 2021. "Jatropha curcas for jet biofuel production: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. How, H.G. & Teoh, Y.H. & Krishnan, B. Navaneetha & Le, T.D. & Nguyen, H.T. & Prabhu, C., 2021. "Prediction of optimum Palm Oil Methyl Ester fuel blend for compression ignition engine using Response Surface Methodology," Energy, Elsevier, vol. 234(C).
    4. Srinidhi, Campli & Madhusudhan, A. & Channapattana, S.V. & Gawali, S.V. & Aithal, Kiran, 2021. "RSM based parameter optimization of CI engine fuelled with nickel oxide dosed Azadirachta indica methyl ester," Energy, Elsevier, vol. 234(C).
    5. Singh, Yashvir & Sharma, Abhishek & Tiwari, Sumit & Singla, Amneesh, 2019. "Optimization of diesel engine performance and emission parameters employing cassia tora methyl esters-response surface methodology approach," Energy, Elsevier, vol. 168(C), pages 909-918.
    6. Alherbawi, Mohammad & AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2021. "Optimum sustainable utilisation of the whole fruit of Jatropha curcas: An energy, water and food nexus approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    7. Tainaka, Kazuki & Fan, Yong & Hashimoto, Nozomu & Nishida, Hiroyuki, 2019. "Effects of blending crude Jatropha oil and heavy fuel oil on the soot behavior of a steam atomizing burner," Renewable Energy, Elsevier, vol. 136(C), pages 358-364.
    8. Varuvel, Edwin Geo & Seetharaman, Sathyanarayanan & Joseph Shobana Bai, Femilda Josephin & Devarajan, Yuvarajan & Balasubramanian, Dhinesh, 2023. "Development of artificial neural network and response surface methodology model to optimize the engine parameters of rubber seed oil – Hydrogen on PCCI operation," Energy, Elsevier, vol. 283(C).
    9. Mirosław Karczewski & Janusz Chojnowski & Grzegorz Szamrej, 2021. "A Review of Low-CO 2 Emission Fuels for a Dual-Fuel RCCI Engine," Energies, MDPI, vol. 14(16), pages 1-39, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    2. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    3. Kshirsagar, Charudatta M. & Anand, Ramanathan, 2017. "Artificial neural network applied forecast on a parametric study of Calophyllum inophyllum methyl ester-diesel engine out responses," Applied Energy, Elsevier, vol. 189(C), pages 555-567.
    4. Braimakis, Konstantinos & Atsonios, Konstantinos & Panopoulos, Kyriakos D. & Karellas, Sotirios & Kakaras, Emmanuel, 2014. "Economic evaluation of decentralized pyrolysis for the production of bio-oil as an energy carrier for improved logistics towards a large centralized gasification plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 57-72.
    5. Sanjid, A. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Abedin, M.J. & Palash, S.M., 2013. "Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 664-682.
    6. Awad, Sary & Loubar, Khaled & Tazerout, Mohand, 2014. "Experimental investigation on the combustion, performance and pollutant emissions of biodiesel from animal fat residues on a direct injection diesel engine," Energy, Elsevier, vol. 69(C), pages 826-836.
    7. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    8. Mohammed I. Jahirul & Richard J. Brown & Wijitha Senadeera & Ian M. O'Hara & Zoran D. Ristovski, 2013. "The Use of Artificial Neural Networks for Identifying Sustainable Biodiesel Feedstocks," Energies, MDPI, vol. 6(8), pages 1-43, July.
    9. Vadery, Vinu & Cherikkallinmel, Sudha Kochiyil & Ramakrishnan, Resmi M. & Sugunan, Sankaran & Narayanan, Binitha N., 2019. "Green production of biodiesel over waste borosilicate glass derived catalyst and the process up-gradation in pilot scale," Renewable Energy, Elsevier, vol. 141(C), pages 1042-1053.
    10. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    11. Muralidharan, K. & Vasudevan, D. & Sheeba, K.N., 2011. "Performance, emission and combustion characteristics of biodiesel fuelled variable compression ratio engine," Energy, Elsevier, vol. 36(8), pages 5385-5393.
    12. Makarfi Isa, Yusuf & Ganda, Elvis Tinashe, 2018. "Bio-oil as a potential source of petroleum range fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 69-75.
    13. Chang, Yu-Cheng & Lee, Wen-Jhy & Wu, Tser Son & Wu, Chang-Yu & Chen, Shui-Jen, 2014. "Use of water containing acetone–butanol–ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel," Energy, Elsevier, vol. 64(C), pages 678-687.
    14. Pandey, Vimal Chandra & Singh, Kripal & Singh, Jay Shankar & Kumar, Akhilesh & Singh, Bajrang & Singh, Rana P., 2012. "Jatropha curcas: A potential biofuel plant for sustainable environmental development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2870-2883.
    15. Sulaiman, F. & Abdullah, N., 2011. "Optimum conditions for maximising pyrolysis liquids of oil palm empty fruit bunches," Energy, Elsevier, vol. 36(5), pages 2352-2359.
    16. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Mekhilef, S., 2011. "A review on prospect of Jatropha curcas for biodiesel in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3733-3756.
    17. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu, 2020. "Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)," Renewable Energy, Elsevier, vol. 151(C), pages 88-102.
    18. Singh, Paramvir & Chauhan, S.R. & Goel, Varun, 2018. "Assessment of diesel engine combustion, performance and emission characteristics fuelled with dual fuel blends," Renewable Energy, Elsevier, vol. 125(C), pages 501-510.
    19. Amutio, M. & Lopez, G. & Artetxe, M. & Elordi, G. & Olazar, M. & Bilbao, J., 2012. "Influence of temperature on biomass pyrolysis in a conical spouted bed reactor," Resources, Conservation & Recycling, Elsevier, vol. 59(C), pages 23-31.
    20. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:122:y:2018:i:c:p:310-322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.