IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v114y2017ipbp887-903.html
   My bibliography  Save this article

Effects of aeroelastic tailoring on performance characteristics of wind turbine systems

Author

Listed:
  • Scott, Samuel
  • Capuzzi, Marco
  • Langston, David
  • Bossanyi, Ervin
  • McCann, Graeme
  • Weaver, Paul M.
  • Pirrera, Alberto

Abstract

Some interesting challenges arise from the drive to build larger, more durable wind turbine rotors. The rationale is that, with current designs, the power generated is theoretically proportional to the square of the blade length, however, theoretical mass increases cubically. Aeroelastic tailoring aims to improve the ratio between increased power capture and mass by offering enhanced combined energy capture and system durability. As such, the design and full system analysis of two adaptive, aeroelastically tailored wind turbine blades is considered herein. One makes use of material bend-twist coupling, whilst the other combines both material and geometric bend-twist coupling. Each structural design meets a predefined coupling distribution, that approximately matches the stiffness of a baseline blade.

Suggested Citation

  • Scott, Samuel & Capuzzi, Marco & Langston, David & Bossanyi, Ervin & McCann, Graeme & Weaver, Paul M. & Pirrera, Alberto, 2017. "Effects of aeroelastic tailoring on performance characteristics of wind turbine systems," Renewable Energy, Elsevier, vol. 114(PB), pages 887-903.
  • Handle: RePEc:eee:renene:v:114:y:2017:i:pb:p:887-903
    DOI: 10.1016/j.renene.2017.06.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117305530
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.06.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lago, Lucas I. & Ponta, Fernando L. & Otero, Alejandro D., 2013. "Analysis of alternative adaptive geometrical configurations for the NREL-5 MW wind turbine blade," Renewable Energy, Elsevier, vol. 59(C), pages 13-22.
    2. Vesel, Richard W. & McNamara, Jack J., 2014. "Performance enhancement and load reduction of a 5 MW wind turbine blade," Renewable Energy, Elsevier, vol. 66(C), pages 391-401.
    3. Capuzzi, M. & Pirrera, A. & Weaver, P.M., 2014. "A novel adaptive blade concept for large-scale wind turbines. Part I: Aeroelastic behaviour," Energy, Elsevier, vol. 73(C), pages 15-24.
    4. Larwood, Scott & van Dam, C.P. & Schow, Daniel, 2014. "Design studies of swept wind turbine blades," Renewable Energy, Elsevier, vol. 71(C), pages 563-571.
    5. Capuzzi, M. & Pirrera, A. & Weaver, P.M., 2014. "A novel adaptive blade concept for large-scale wind turbines. Part II: Structural design and power performance," Energy, Elsevier, vol. 73(C), pages 25-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chu, Yung-Jeh & Lam, Heung-Fai, 2020. "Comparative study of the performances of a bio-inspired flexible-bladed wind turbine and a rigid-bladed wind turbine in centimeter-scale," Energy, Elsevier, vol. 213(C).
    2. José Luis Torres-Madroñero & Joham Alvarez-Montoya & Daniel Restrepo-Montoya & Jorge Mario Tamayo-Avendaño & César Nieto-Londoño & Julián Sierra-Pérez, 2020. "Technological and Operational Aspects That Limit Small Wind Turbines Performance," Energies, MDPI, vol. 13(22), pages 1-39, November.
    3. Jorge Mario Tamayo-Avendaño & Ivan David Patiño-Arcila & César Nieto-Londoño & Julián Sierra-Pérez, 2023. "Fluid–Structure Interaction Analysis of a Wind Turbine Blade with Passive Control by Bend–Twist Coupling," Energies, MDPI, vol. 16(18), pages 1-26, September.
    4. Michael K. McWilliam & Antariksh C. Dicholkar & Frederik Zahle & Taeseong Kim, 2022. "Post-Optimum Sensitivity Analysis with Automatically Tuned Numerical Gradients Applied to Swept Wind Turbine Blades," Energies, MDPI, vol. 15(9), pages 1-19, April.
    5. Dimitris Drikakis & Talib Dbouk, 2022. "The Role of Computational Science in Wind and Solar Energy: A Critical Review," Energies, MDPI, vol. 15(24), pages 1-20, December.
    6. Barr, Stephen M. & Jaworski, Justin W., 2019. "Optimization of tow-steered composite wind turbine blades for static aeroelastic performance," Renewable Energy, Elsevier, vol. 139(C), pages 859-872.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McKenna, R. & Ostman v.d. Leye, P. & Fichtner, W., 2016. "Key challenges and prospects for large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1212-1221.
    2. José Luis Torres-Madroñero & Joham Alvarez-Montoya & Daniel Restrepo-Montoya & Jorge Mario Tamayo-Avendaño & César Nieto-Londoño & Julián Sierra-Pérez, 2020. "Technological and Operational Aspects That Limit Small Wind Turbines Performance," Energies, MDPI, vol. 13(22), pages 1-39, November.
    3. Daróczy, László & Janiga, Gábor & Thévenin, Dominique, 2016. "Analysis of the performance of a H-Darrieus rotor under uncertainty using Polynomial Chaos Expansion," Energy, Elsevier, vol. 113(C), pages 399-412.
    4. Shafiqur Rehman & Md. Mahbub Alam & Luai M. Alhems & M. Mujahid Rafique, 2018. "Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review," Energies, MDPI, vol. 11(3), pages 1-34, February.
    5. Daróczy, László & Janiga, Gábor & Petrasch, Klaus & Webner, Michael & Thévenin, Dominique, 2015. "Comparative analysis of turbulence models for the aerodynamic simulation of H-Darrieus rotors," Energy, Elsevier, vol. 90(P1), pages 680-690.
    6. Longfeng Hou & Sheng Shen & Ying Wang, 2021. "Numerical Study on Aerodynamic Performance of Different Forms of Adaptive Blades for Vertical Axis Wind Turbines," Energies, MDPI, vol. 14(4), pages 1-19, February.
    7. Pourrajabian, Abolfazl & Nazmi Afshar, Peyman Amir & Ahmadizadeh, Mehdi & Wood, David, 2016. "Aero-structural design and optimization of a small wind turbine blade," Renewable Energy, Elsevier, vol. 87(P2), pages 837-848.
    8. Tang, Di & Bao, Shiyi & Luo, Lijia & Mao, Jianfeng & Lv, Binbin & Guo, Hongtao, 2017. "Study on the aeroelastic responses of a wind turbine using a coupled multibody-FVW method," Energy, Elsevier, vol. 141(C), pages 2300-2313.
    9. Barr, Stephen M. & Jaworski, Justin W., 2019. "Optimization of tow-steered composite wind turbine blades for static aeroelastic performance," Renewable Energy, Elsevier, vol. 139(C), pages 859-872.
    10. Chen, Jincheng & Wang, Feng & Stelson, Kim A., 2018. "A mathematical approach to minimizing the cost of energy for large utility wind turbines," Applied Energy, Elsevier, vol. 228(C), pages 1413-1422.
    11. Ikeda, Teruaki & Tanaka, Hiroto & Yoshimura, Ryosuke & Noda, Ryusuke & Fujii, Takeo & Liu, Hao, 2018. "A robust biomimetic blade design for micro wind turbines," Renewable Energy, Elsevier, vol. 125(C), pages 155-165.
    12. Zhu, Wei Jun & Shen, Wen Zhong & Sørensen, Jens Nørkær & Yang, Hua, 2017. "Verification of a novel innovative blade root design for wind turbines using a hybrid numerical method," Energy, Elsevier, vol. 141(C), pages 1661-1670.
    13. Michael K. McWilliam & Antariksh C. Dicholkar & Frederik Zahle & Taeseong Kim, 2022. "Post-Optimum Sensitivity Analysis with Automatically Tuned Numerical Gradients Applied to Swept Wind Turbine Blades," Energies, MDPI, vol. 15(9), pages 1-19, April.
    14. Nejra Beganovic & Jackson G. Njiri & Dirk Söffker, 2018. "Reduction of Structural Loads in Wind Turbines Based on an Adapted Control Strategy Concerning Online Fatigue Damage Evaluation Models," Energies, MDPI, vol. 11(12), pages 1-15, December.
    15. Sessarego, Matias & Feng, Ju & Ramos-García, Néstor & Horcas, Sergio González, 2020. "Design optimization of a curved wind turbine blade using neural networks and an aero-elastic vortex method under turbulent inflow," Renewable Energy, Elsevier, vol. 146(C), pages 1524-1535.
    16. Jieyan Chen & Chengxi Li, 2020. "Design Optimization and Coupled Dynamics Analysis of an Offshore Wind Turbine with a Single Swivel Connected Tether," Energies, MDPI, vol. 13(14), pages 1-26, July.
    17. Miriam L. A. Gemaque & Jerson R. P. Vaz & Osvaldo R. Saavedra, 2022. "Optimization of Hydrokinetic Swept Blades," Sustainability, MDPI, vol. 14(21), pages 1-13, October.
    18. Lee, Kyoungsoo & Huque, Ziaul & Kommalapati, Raghava & Han, Sang-Eul, 2017. "Fluid-structure interaction analysis of NREL phase VI wind turbine: Aerodynamic force evaluation and structural analysis using FSI analysis," Renewable Energy, Elsevier, vol. 113(C), pages 512-531.
    19. Ponta, Fernando L. & Otero, Alejandro D. & Lago, Lucas I. & Rajan, Anurag, 2016. "Effects of rotor deformation in wind-turbine performance: The Dynamic Rotor Deformation Blade Element Momentum model (DRD–BEM)," Renewable Energy, Elsevier, vol. 92(C), pages 157-170.
    20. Silvia C. de P. Andrade & Déborah A. T. D. do Rio Vaz & Jerson R. P. Vaz, 2023. "A Simplified Optimization Model for Hydrokinetic Blades with Diffuser and Swept Rotor," Sustainability, MDPI, vol. 16(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:114:y:2017:i:pb:p:887-903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.