IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v73y2014icp25-32.html
   My bibliography  Save this article

A novel adaptive blade concept for large-scale wind turbines. Part II: Structural design and power performance

Author

Listed:
  • Capuzzi, M.
  • Pirrera, A.
  • Weaver, P.M.

Abstract

This two-part body of work considers wind turbines that increase annual energy production on account of an enhanced aeroelastic behaviour. In Part I, an aerodynamic analysis was performed to identify the theoretically ideal aeroelastic response of a reference blade. By so doing, the distributions of twist that maximise the power yielded at different wind speeds were obtained. Then, noting that the total twist is the sum of pre-twist, elastically-induced twist and pitch angle, a distribution of elastic twist was identified, that adaptively varies the blade's total twist to align with the ideal aeroelastic response, while also providing gust load alleviation capability. In Part II, the required elastically-induced twist is analysed from a structural point of view and adapted accordingly. In addition, a blade concept that realises the desired adaptive behaviour is proposed and the increase of power harvested is assessed by a provisional structural design.

Suggested Citation

  • Capuzzi, M. & Pirrera, A. & Weaver, P.M., 2014. "A novel adaptive blade concept for large-scale wind turbines. Part II: Structural design and power performance," Energy, Elsevier, vol. 73(C), pages 25-32.
  • Handle: RePEc:eee:energy:v:73:y:2014:i:c:p:25-32
    DOI: 10.1016/j.energy.2014.04.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214004861
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.04.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shafiqur Rehman & Md. Mahbub Alam & Luai M. Alhems & M. Mujahid Rafique, 2018. "Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review," Energies, MDPI, vol. 11(3), pages 1-34, February.
    2. McKenna, R. & Ostman v.d. Leye, P. & Fichtner, W., 2016. "Key challenges and prospects for large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1212-1221.
    3. José Luis Torres-Madroñero & Joham Alvarez-Montoya & Daniel Restrepo-Montoya & Jorge Mario Tamayo-Avendaño & César Nieto-Londoño & Julián Sierra-Pérez, 2020. "Technological and Operational Aspects That Limit Small Wind Turbines Performance," Energies, MDPI, vol. 13(22), pages 1-39, November.
    4. Tang, Di & Bao, Shiyi & Luo, Lijia & Mao, Jianfeng & Lv, Binbin & Guo, Hongtao, 2017. "Study on the aeroelastic responses of a wind turbine using a coupled multibody-FVW method," Energy, Elsevier, vol. 141(C), pages 2300-2313.
    5. Scott, Samuel & Capuzzi, Marco & Langston, David & Bossanyi, Ervin & McCann, Graeme & Weaver, Paul M. & Pirrera, Alberto, 2017. "Effects of aeroelastic tailoring on performance characteristics of wind turbine systems," Renewable Energy, Elsevier, vol. 114(PB), pages 887-903.
    6. Pourrajabian, Abolfazl & Nazmi Afshar, Peyman Amir & Ahmadizadeh, Mehdi & Wood, David, 2016. "Aero-structural design and optimization of a small wind turbine blade," Renewable Energy, Elsevier, vol. 87(P2), pages 837-848.
    7. Daróczy, László & Janiga, Gábor & Petrasch, Klaus & Webner, Michael & Thévenin, Dominique, 2015. "Comparative analysis of turbulence models for the aerodynamic simulation of H-Darrieus rotors," Energy, Elsevier, vol. 90(P1), pages 680-690.
    8. Chen, Jincheng & Wang, Feng & Stelson, Kim A., 2018. "A mathematical approach to minimizing the cost of energy for large utility wind turbines," Applied Energy, Elsevier, vol. 228(C), pages 1413-1422.
    9. Longfeng Hou & Sheng Shen & Ying Wang, 2021. "Numerical Study on Aerodynamic Performance of Different Forms of Adaptive Blades for Vertical Axis Wind Turbines," Energies, MDPI, vol. 14(4), pages 1-19, February.
    10. Daróczy, László & Janiga, Gábor & Thévenin, Dominique, 2016. "Analysis of the performance of a H-Darrieus rotor under uncertainty using Polynomial Chaos Expansion," Energy, Elsevier, vol. 113(C), pages 399-412.
    11. Barr, Stephen M. & Jaworski, Justin W., 2019. "Optimization of tow-steered composite wind turbine blades for static aeroelastic performance," Renewable Energy, Elsevier, vol. 139(C), pages 859-872.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:73:y:2014:i:c:p:25-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.