IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v103y2017icp208-216.html
   My bibliography  Save this article

The effect of throttle valve positions on thermodynamic second law efficiency and availability of SI engine using bioethanol-gasoline blends

Author

Listed:
  • Rostami, Sajad
  • Kiani Deh Kiani, Mostafa
  • Eslami, Maryam
  • Ghobadian, Barat

Abstract

Exergy analysis is conceptualized as an instrument for determining the attribute of an involved process in transferring availability of input to the system and the location in which useful energy reduction occurs. The aim of this study was to examine the effect of throttle valve opening positions on the exergy analysis of SI engine using bioethanol-gasoline blends. To this end, the definitions dealing with exergy and pertinent exergy equations as well as their applications for closed systems were provided. The results showed that the largest share of the irreversibility in the engine was the combustion process. In addition, the results showed that total exergy, burned fuel availability, availability with heat transfer and irreversibility for E0, E20, E40, E60 and E85 fuels, when the throttle valve is fully opened, were higher, compared to the 25%, 50%, and 75% throttle valve opening positions. Furthermore, it was found that the efficiency of thermodynamic second law in 25%, 50%, and 75% throttle valve opening positions was reduced to 18.7%, 29%, 60.6% for E0, 21.5%, 32.7%, 61.5% for E20, 23%, 35.4%, 62.5% for E40, 22.8%, 35.5%, 63.3% for E60, and 27%, 40%, 65% for E85 fuels, respectively, compared to 100% position.

Suggested Citation

  • Rostami, Sajad & Kiani Deh Kiani, Mostafa & Eslami, Maryam & Ghobadian, Barat, 2017. "The effect of throttle valve positions on thermodynamic second law efficiency and availability of SI engine using bioethanol-gasoline blends," Renewable Energy, Elsevier, vol. 103(C), pages 208-216.
  • Handle: RePEc:eee:renene:v:103:y:2017:i:c:p:208-216
    DOI: 10.1016/j.renene.2016.11.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116310023
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.11.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Hongjie & Yan, Feng & Yu, Hao & Su, W.H., 2015. "Analysis of exergy loss of gasoline surrogate combustion process based on detailed chemical kinetics," Applied Energy, Elsevier, vol. 152(C), pages 11-19.
    2. Fu, Jianqin & Liu, Jingping & Feng, Renhua & Yang, Yanping & Wang, Linjun & Wang, Yong, 2013. "Energy and exergy analysis on gasoline engine based on mapping characteristics experiment," Applied Energy, Elsevier, vol. 102(C), pages 622-630.
    3. Shuit, S.H. & Tan, K.T. & Lee, K.T. & Kamaruddin, A.H., 2009. "Oil palm biomass as a sustainable energy source: A Malaysian case study," Energy, Elsevier, vol. 34(9), pages 1225-1235.
    4. Azoumah, Y. & Blin, J. & Daho, T., 2009. "Exergy efficiency applied for the performance optimization of a direct injection compression ignition (CI) engine using biofuels," Renewable Energy, Elsevier, vol. 34(6), pages 1494-1500.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fukang Ma & Changlu Zhao & Fujun Zhang & Zhenfeng Zhao & Zhenyu Zhang & Zhaoyi Xie & Hao Wang, 2015. "An Experimental Investigation on the Combustion and Heat Release Characteristics of an Opposed-Piston Folded-Cranktrain Diesel Engine," Energies, MDPI, vol. 8(7), pages 1-17, June.
    2. Yao, Zhi-Min & Qian, Zuo-Qin & Li, Rong & Hu, Eric, 2019. "Energy efficiency analysis of marine high-powered medium-speed diesel engine base on energy balance and exergy," Energy, Elsevier, vol. 176(C), pages 991-1006.
    3. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    4. Feng, Ping & Hao, Lifang & Huo, Chaofei & Wang, Ze & Lin, Weigang & Song, Wenli, 2014. "Rheological behavior of coal bio-oil slurries," Energy, Elsevier, vol. 66(C), pages 744-749.
    5. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    6. Khalili-Garakani, Amirhossein & Ivakpour, Javad & Kasiri, Norollah, 2016. "Evolutionary synthesis of optimum light ends recovery unit with exergy analysis application," Applied Energy, Elsevier, vol. 168(C), pages 507-522.
    7. Nasrin Aghamohammadi & Stacy Simai Reginald & Ahmad Shamiri & Ali Akbar Zinatizadeh & Li Ping Wong & Nik Meriam Binti Nik Sulaiman, 2016. "An Investigation of Sustainable Power Generation from Oil Palm Biomass: A Case Study in Sarawak," Sustainability, MDPI, vol. 8(5), pages 1-19, April.
    8. Di Battista, D. & Cipollone, R., 2016. "Experimental and numerical assessment of methods to reduce warm up time of engine lubricant oil," Applied Energy, Elsevier, vol. 162(C), pages 570-580.
    9. Sun, Hongjie & Yan, Feng & Yu, Hao & Su, W.H., 2015. "Analysis of exergy loss of gasoline surrogate combustion process based on detailed chemical kinetics," Applied Energy, Elsevier, vol. 152(C), pages 11-19.
    10. Shu, Jun & Fu, Jianqin & Liu, Jingping & Ma, Yinjie & Wang, Shuqian & Deng, Banglin & Zeng, Dongjian, 2019. "Effects of injector spray angle on combustion and emissions characteristics of a natural gas (NG)-diesel dual fuel engine based on CFD coupled with reduced chemical kinetic model," Applied Energy, Elsevier, vol. 233, pages 182-195.
    11. Sulaiman, F. & Abdullah, N., 2011. "Optimum conditions for maximising pyrolysis liquids of oil palm empty fruit bunches," Energy, Elsevier, vol. 36(5), pages 2352-2359.
    12. Saba, N. & Jawaid, M. & Hakeem, K.R. & Paridah, M.T. & Khalina, A. & Alothman, O.Y., 2015. "Potential of bioenergy production from industrial kenaf (Hibiscus cannabinus L.) based on Malaysian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 446-459.
    13. Tan, Sie Ting & Hashim, Haslenda & Abdul Rashid, Ahmad H. & Lim, Jeng Shiun & Ho, Wai Shin & Jaafar, Abu Bakar, 2018. "Economic and spatial planning for sustainable oil palm biomass resources to mitigate transboundary haze issue," Energy, Elsevier, vol. 146(C), pages 169-178.
    14. Fabio Fatigati & Marco Di Bartolomeo & Davide Di Battista & Roberto Cipollone, 2020. "Experimental Validation of a New Modeling for the Design Optimization of a Sliding Vane Rotary Expander Operating in an ORC-Based Power Unit," Energies, MDPI, vol. 13(16), pages 1-23, August.
    15. Ahmed Zainul Abideen & Veera Pandiyan Kaliani Sundram & Shahryar Sorooshian, 2023. "Scope for Sustainable Development of Small Holder Farmers in the Palm Oil Supply Chain—A Systematic Literature Review and Thematic Scientific Mapping," Logistics, MDPI, vol. 7(1), pages 1-24, January.
    16. Dookheh, Maryam & Najafi Chermahini, Alireza, 2023. "Surface modified mesoporous KIT-5: A catalytic approach to obtain butyl levulinate from starch," Renewable Energy, Elsevier, vol. 211(C), pages 227-235.
    17. Kuok Ho Daniel Tang & Hamad M. S. Al Qahtani, 2020. "Sustainability of oil palm plantations in Malaysia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 4999-5023, August.
    18. Li, Ligeng & Tian, Hua & Liu, Peng & Shi, Lingfeng & Shu, Gequn, 2021. "Optimization of CO2 Transcritical Power Cycle (CTPC) for engine waste heat recovery based on split concept," Energy, Elsevier, vol. 229(C).
    19. Mohseni, Shayan & Pishvaee, Mir Saman & Sahebi, Hadi, 2016. "Robust design and planning of microalgae biomass-to-biodiesel supply chain: A case study in Iran," Energy, Elsevier, vol. 111(C), pages 736-755.
    20. Lam, Hon Loong & Ng, Wendy P.Q. & Ng, Rex T.L. & Ng, Ern Huay & Aziz, Mustafa K. Abdul & Ng, Denny K.S., 2013. "Green strategy for sustainable waste-to-energy supply chain," Energy, Elsevier, vol. 57(C), pages 4-16.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:103:y:2017:i:c:p:208-216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.