IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v102y2017ipap199-204.html
   My bibliography  Save this article

Degradation analysis of photovoltaic modules under tropical climatic conditions and its impacts on LCOE

Author

Listed:
  • Limmanee, Amornrat
  • Songtrai, Sasiwimon
  • Udomdachanut, Nuttakarn
  • Kaewniyompanit, Songpakit
  • Sato, Yukinobu
  • Nakaishi, Masaki
  • Kittisontirak, Songkiate
  • Sriprapha, Kobsak
  • Sakamoto, Yukitaka

Abstract

After 4 years of operation at Thailand Science Park, degradation analysis of 73 photovoltaic (PV) modules of four different PV technologies; multi c-Si, hetero-junction Si, micromorph and CIGS, has been carried out. The degradation rate (DR) of individual modules and array performance are presented. It was found that some micromorph (thin film Si 1) modules seriously degraded and were in failure mode, resulting in a severe degradation of the thin Si 1 array’s performance. The average DR of other PV modules was found to range between 0.3 and 1.9%/year. The standard deviation (SD) of data from modules in the same array indicates the level of mismatch, which plays a role in evaluating array’s performance. The levelized cost of electricity (LCOE) in this study was found to range between 4.1 and 14 baht/kWh, depending on PV technology and its DR. The results suggest that, without any reduction of costs, the LCOE of solar PV electricity in Thailand would possibly be comparable with the retail price when the present PV technology has DR of about 0.2%/year or lower. The database we obtained is informative and useful for a further study on PV reliability and cost of solar PV electricity in the tropics.

Suggested Citation

  • Limmanee, Amornrat & Songtrai, Sasiwimon & Udomdachanut, Nuttakarn & Kaewniyompanit, Songpakit & Sato, Yukinobu & Nakaishi, Masaki & Kittisontirak, Songkiate & Sriprapha, Kobsak & Sakamoto, Yukitaka, 2017. "Degradation analysis of photovoltaic modules under tropical climatic conditions and its impacts on LCOE," Renewable Energy, Elsevier, vol. 102(PA), pages 199-204.
  • Handle: RePEc:eee:renene:v:102:y:2017:i:pa:p:199-204
    DOI: 10.1016/j.renene.2016.10.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811630917X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.10.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Flowers, Mallory E. & Smith, Matthew K. & Parsekian, Ara W. & Boyuk, Dmitriy S. & McGrath, Jenna K. & Yates, Luke, 2016. "Climate impacts on the cost of solar energy," Energy Policy, Elsevier, vol. 94(C), pages 264-273.
    2. Limmanee, Amornrat & Udomdachanut, Nuttakarn & Songtrai, Sasiwimon & Kaewniyompanit, Songpakit & Sato, Yukinobu & Nakaishi, Masaki & Kittisontirak, Songkiate & Sriprapha, Kobsak & Sakamoto, Yukitaka, 2016. "Field performance and degradation rates of different types of photovoltaic modules: A case study in Thailand," Renewable Energy, Elsevier, vol. 89(C), pages 12-17.
    3. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    4. Phinikarides, Alexander & Makrides, George & Zinsser, Bastian & Schubert, Markus & Georghiou, George E., 2015. "Analysis of photovoltaic system performance time series: Seasonality and performance loss," Renewable Energy, Elsevier, vol. 77(C), pages 51-63.
    5. Hernández-Moro, J. & Martínez-Duart, J.M., 2013. "Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 119-132.
    6. Sharma, Vikrant & Sastry, O.S. & Kumar, Arun & Bora, Birinchi & Chandel, S.S., 2014. "Degradation analysis of a-Si, (HIT) hetro-junction intrinsic thin layer silicon and m-C-Si solar photovoltaic technologies under outdoor conditions," Energy, Elsevier, vol. 72(C), pages 536-546.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hassan Gholami & Harald Nils Røstvik, 2021. "Levelised Cost of Electricity (LCOE) of Building Integrated Photovoltaics (BIPV) in Europe, Rational Feed-In Tariffs and Subsidies," Energies, MDPI, vol. 14(9), pages 1-15, April.
    2. Pagnini, Luisa & Bracco, Stefano & Delfino, Federico & de-Simón-Martín, Miguel, 2024. "Levelized cost of electricity in renewable energy communities: Uncertainty propagation analysis," Applied Energy, Elsevier, vol. 366(C).
    3. Atsu, Divine & Seres, Istvan & Aghaei, Mohammadreza & Farkas, Istvan, 2020. "Analysis of long-term performance and reliability of PV modules under tropical climatic conditions in sub-Saharan," Renewable Energy, Elsevier, vol. 162(C), pages 285-295.
    4. Roumpakias, Elias & Stamatelos, Anastassios, 2019. "Performance analysis of a grid-connected photovoltaic park after 6 years of operation," Renewable Energy, Elsevier, vol. 141(C), pages 368-378.
    5. Hasan Masrur & Keifa Vamba Konneh & Mikaeel Ahmadi & Kaisar R. Khan & Mohammad Lutfi Othman & Tomonobu Senjyu, 2021. "Assessing the Techno-Economic Impact of Derating Factors on Optimally Tilted Grid-Tied Photovoltaic Systems," Energies, MDPI, vol. 14(4), pages 1-21, February.
    6. Pillot, Benjamin & de Siqueira, Sandro & Dias, João Batista, 2018. "Grid parity analysis of distributed PV generation using Monte Carlo approach: The Brazilian case," Renewable Energy, Elsevier, vol. 127(C), pages 974-988.
    7. Visser, Henning & Thopil, George Alex & Brent, Alan, 2019. "Life cycle cost profitability of biomass power plants in South Africa within the international context," Renewable Energy, Elsevier, vol. 139(C), pages 9-21.
    8. Bouaichi, Abdellatif & Alami Merrouni, Ahmed & Hajjaj, Charaf & Messaoudi, Choukri & Ghennioui, Abdellatif & Benlarabi, Ahmed & Ikken, Badr & El Amrani, Aumeur & Zitouni, Houssin, 2019. "In-situ evaluation of the early PV module degradation of various technologies under harsh climatic conditions: The case of Morocco," Renewable Energy, Elsevier, vol. 143(C), pages 1500-1518.
    9. Peinado Gonzalo, Alfredo & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2020. "Survey of maintenance management for photovoltaic power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Yuanxin Liu & Feng Yun Li & Xinhua Yu, 2018. "Gas Supply, Pricing Mechanism and the Economics of Power Generation in China," Energies, MDPI, vol. 11(5), pages 1-34, April.
    11. Ceran, Bartosz & Mielcarek, Agata & Hassan, Qusay & Teneta, Janusz & Jaszczur, Marek, 2021. "Aging effects on modelling and operation of a photovoltaic system with hydrogen storage," Applied Energy, Elsevier, vol. 297(C).
    12. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    13. Piliougine, Michel & Sánchez-Friera, Paula & Petrone, Giovanni & Sánchez-Pacheco, Francisco José & Spagnuolo, Giovanni & Sidrach-de-Cardona, Mariano, 2022. "New model to study the outdoor degradation of thin–film photovoltaic modules," Renewable Energy, Elsevier, vol. 193(C), pages 857-869.
    14. Bouaichi, Abdellatif & El Amrani, Aumeur & Ouhadou, Malika & Lfakir, Aberrazak & Messaoudi, Choukri, 2020. "In-situ performance and degradation of three different photovoltaic module technologies installed in arid climate of Morocco," Energy, Elsevier, vol. 190(C).
    15. Silvestre, Santiago & Tahri, Ali & Tahri, Fatima & Benlebna, Soumiya & Chouder, Aissa, 2018. "Evaluation of the performance and degradation of crystalline silicon-based photovoltaic modules in the Saharan environment," Energy, Elsevier, vol. 152(C), pages 57-63.
    16. Meza, Carlos Germán & Zuluaga Rodríguez, Catalina & D'Aquino, Camila Agner & Amado, Nilton Bispo & Rodrigues, Alcantaro & Sauer, Ildo Luis, 2019. "Toward a 100% renewable island: A case study of Ometepe's energy mix," Renewable Energy, Elsevier, vol. 132(C), pages 628-648.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    2. Yazdani, Hamed & Yaghoubi, Mahmood, 2021. "Techno-economic study of photovoltaic systems performance in Shiraz, Iran," Renewable Energy, Elsevier, vol. 172(C), pages 251-262.
    3. Quansah, David A. & Adaramola, Muyiwa S., 2019. "Assessment of early degradation and performance loss in five co-located solar photovoltaic module technologies installed in Ghana using performance ratio time-series regression," Renewable Energy, Elsevier, vol. 131(C), pages 900-910.
    4. Spiros Papaefthimiou, Manolis Souliotis, and Kostas Andriosopoulos, 2016. "Grid parity of solar energy: imminent fact or future's fiction," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
    5. Romero-Fiances, Irene & Livera, Andreas & Theristis, Marios & Makrides, George & Stein, Joshua S. & Nofuentes, Gustavo & de la Casa, Juan & Georghiou, George E., 2022. "Impact of duration and missing data on the long-term photovoltaic degradation rate estimation," Renewable Energy, Elsevier, vol. 181(C), pages 738-748.
    6. Wang, Yu & Zhou, Sheng & Huo, Hong, 2014. "Cost and CO2 reductions of solar photovoltaic power generation in China: Perspectives for 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 370-380.
    7. Gonzalez-Moreno, A. & Marcos, J. & de la Parra, I. & Marroyo, L., 2022. "A PV ramp-rate control strategy to extend battery lifespan using forecasting," Applied Energy, Elsevier, vol. 323(C).
    8. Limmanee, Amornrat & Udomdachanut, Nuttakarn & Songtrai, Sasiwimon & Kaewniyompanit, Songpakit & Sato, Yukinobu & Nakaishi, Masaki & Kittisontirak, Songkiate & Sriprapha, Kobsak & Sakamoto, Yukitaka, 2016. "Field performance and degradation rates of different types of photovoltaic modules: A case study in Thailand," Renewable Energy, Elsevier, vol. 89(C), pages 12-17.
    9. Pereira, A. & Caroff, T. & Lorin, G. & Baffie, T. & Romanjek, K. & Vesin, S. & Kusiaku, K. & Duchemin, H. & Salvador, V. & Miloud-Ali, N. & Aixala, L. & Simon, J., 2015. "High temperature solar thermoelectric generator – Indoor characterization method and modeling," Energy, Elsevier, vol. 84(C), pages 485-492.
    10. Wang, Tiantian & Wang, Yanhua & Wang, Ke & Fu, Sha & Ding, Li, 2024. "Five-dimensional assessment of China's centralized and distributed photovoltaic potential: From solar irradiation to CO2 mitigation," Applied Energy, Elsevier, vol. 356(C).
    11. Ouedraogo, Bachir I. & Kouame, S. & Azoumah, Y. & Yamegueu, D., 2015. "Incentives for rural off grid electrification in Burkina Faso using LCOE," Renewable Energy, Elsevier, vol. 78(C), pages 573-582.
    12. Tervo, Eric & Agbim, Kenechi & DeAngelis, Freddy & Hernandez, Jeffrey & Kim, Hye Kyung & Odukomaiya, Adewale, 2018. "An economic analysis of residential photovoltaic systems with lithium ion battery storage in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1057-1066.
    13. Kumar, Manish & Kumar, Arun, 2019. "Experimental validation of performance and degradation study of canal-top photovoltaic system," Applied Energy, Elsevier, vol. 243(C), pages 102-118.
    14. Jägemann, Cosima & Hagspiel, Simeon & Lindenberger, Dietmar, 2013. "The Economic Inefficiency of Grid Parity: The Case of German Photovoltaics," EWI Working Papers 2013-19, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    15. Ameur, Arechkik & Berrada, Asmae & Bouaichi, Abdellatif & Loudiyi, Khalid, 2022. "Long-term performance and degradation analysis of different PV modules under temperate climate," Renewable Energy, Elsevier, vol. 188(C), pages 37-51.
    16. Bouaichi, Abdellatif & El Amrani, Aumeur & Ouhadou, Malika & Lfakir, Aberrazak & Messaoudi, Choukri, 2020. "In-situ performance and degradation of three different photovoltaic module technologies installed in arid climate of Morocco," Energy, Elsevier, vol. 190(C).
    17. Comello, Stephen & Reichelstein, Stefan, 2016. "The U.S. investment tax credit for solar energy: Alternatives to the anticipated 2017 step-down," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 591-602.
    18. Alexandra G. Papadopoulou & George Vasileiou & Alexandros Flamos, 2020. "A Comparison of Dispatchable RES Technoeconomics: Is There a Niche for Concentrated Solar Power?," Energies, MDPI, vol. 13(18), pages 1-22, September.
    19. Dong, Changgui & Wiser, Ryan, 2013. "The impact of city-level permitting processes on residential photovoltaic installation prices and development times: An empirical analysis of solar systems in California cities," Energy Policy, Elsevier, vol. 63(C), pages 531-542.
    20. Piotrowska–Woroniak, Joanna & Woroniak, Grzegorz & Załuska, Wiesław, 2015. "Energy production from PV and carbon reduction in great lakes region of Masuria Poland: A case study of water park in Elk," Renewable Energy, Elsevier, vol. 83(C), pages 1315-1325.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:102:y:2017:i:pa:p:199-204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.