IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v101y2017icp856-872.html
   My bibliography  Save this article

Experimental study of enhancement of heat transfer and pressure drop in a solar air channel with discretized broken V-pattern baffle

Author

Listed:
  • Kumar, Raj
  • Sethi, Muneesh
  • Chauhan, Ranchan
  • Kumar, Anil

Abstract

This article presents an experimental study on heat transfer and friction characteristics of solar air channel fitted with discretized broken V-pattern baffle on the heated plate. The effect of geometrical parameters, predominantly the gap width and gap location has been investigated. The roughened baffle air channel has a width to height ratio, W/H of 10. The relative baffle gap distance, Dd/Lv and relative baffle gap width, gw/Hb has been varied from 0.26 to 0.83 and 0.5–1.5, respectively. Experiments have been carried out for the range of Reynolds number, Re from 3000 to 21,000 with the relative baffle height, Hb/H range of 0.25–0.80, relative baffle pitch, Pb/H range of 0.5–2.5; and angle of attack, αa range of 30°–70°. The optimal values of geometrical parameters of roughness have been obtained and discussed. For Nurs the greatest enhancement of the order of 4.47 times of the corresponding data of the without channel has been obtained. The absolute highest data of thermal hydraulic performance parameter has been found to be greater corresponding to Dd/Lv of 0.67, gw/Hb of 1.0, Hb/H of 0.50, Pb/H of 1.5, and αa of 60°. The maximum value of the thermal hydraulic performance parameter was found to be 3.14 for the range of parameters investigated.

Suggested Citation

  • Kumar, Raj & Sethi, Muneesh & Chauhan, Ranchan & Kumar, Anil, 2017. "Experimental study of enhancement of heat transfer and pressure drop in a solar air channel with discretized broken V-pattern baffle," Renewable Energy, Elsevier, vol. 101(C), pages 856-872.
  • Handle: RePEc:eee:renene:v:101:y:2017:i:c:p:856-872
    DOI: 10.1016/j.renene.2016.09.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116308229
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.09.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Anil & Kim, Man-Hoe, 2016. "Heat transfer and fluid flow characteristics in air duct with various V-pattern rib roughness on the heated plate: A comparative study," Energy, Elsevier, vol. 103(C), pages 75-85.
    2. Akpinar, Ebru Kavak & Koçyigit, Fatih, 2010. "Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates," Applied Energy, Elsevier, vol. 87(11), pages 3438-3450, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prasad, Jay Shankar & Datta, Aparesh & Mondal, Sirshendu, 2024. "Numerical analysis of a solar air heater with offset transverse ribs placed near the absorber plate," Renewable Energy, Elsevier, vol. 227(C).
    2. Prasad, Jay Shankar & Datta, Aparesh & Mondal, Sirshendu, 2024. "Flow and thermal behavior of solar air heater with grooved roughness," Renewable Energy, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    2. Tuncer, Azim Doğuş & Khanlari, Ataollah, 2023. "Improving the performance of a triple-flow solar air collector using recyclable aluminum cans as extended heat transfer surfaces: An energetic, exergetic, economic and environmental survey," Energy, Elsevier, vol. 282(C).
    3. Arabhosseini, Akbar & Samimi-Akhijahani, Hadi & Motahayyer, Mehrnosh, 2019. "Increasing the energy and exergy efficiencies of a collector using porous and recycling system," Renewable Energy, Elsevier, vol. 132(C), pages 308-325.
    4. Das, Mehmet & Akpinar, Ebru Kavak, 2021. "Investigation of the effects of solar tracking system on performance of the solar air dryer," Renewable Energy, Elsevier, vol. 167(C), pages 907-916.
    5. Fudholi, Ahmad & Zohri, Muhammad & Rukman, Nurul Shahirah Binti & Nazri, Nurul Syakirah & Mustapha, Muslizainun & Yen, Chan Hoy & Mohammad, Masita & Sopian, Kamaruzzaman, 2019. "Exergy and sustainability index of photovoltaic thermal (PVT) air collector: A theoretical and experimental study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 44-51.
    6. Daghigh, Roonak & Shafieian, Abdellah, 2016. "An experimental study of a heat pipe evacuated tube solar dryer with heat recovery system," Renewable Energy, Elsevier, vol. 96(PA), pages 872-880.
    7. Zaharil, Hafiz Aman, 2021. "An investigation on the usage of different supercritical fluids in parabolic trough solar collector," Renewable Energy, Elsevier, vol. 168(C), pages 676-691.
    8. Rabha, D.K. & Muthukumar, P. & Somayaji, C., 2017. "Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger," Renewable Energy, Elsevier, vol. 105(C), pages 764-773.
    9. Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.
    10. Park, S.R. & Pandey, A.K. & Tyagi, V.V. & Tyagi, S.K., 2014. "Energy and exergy analysis of typical renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 105-123.
    11. Wajs, Jan & Golabek, Aleksandra & Bochniak, Roksana & Mikielewicz, Dariusz, 2020. "Air-cooled photovoltaic roof tile as an example of the BIPVT system – An experimental study on the energy and exergy performance," Energy, Elsevier, vol. 197(C).
    12. Tiwari, Sumit & Agrawal, Sanjay & Tiwari, G.N., 2018. "PVT air collector integrated greenhouse dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 142-159.
    13. Alam, Tabish & Kim, Man-Hoe, 2018. "A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 813-839.
    14. Razak, A.A. & Majid, Z.A.A. & Azmi, W.H. & Ruslan, M.H. & Choobchian, Sh. & Najafi, G. & Sopian, K., 2016. "Review on matrix thermal absorber designs for solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 682-693.
    15. Singh, Sukhmeet & Chander, Subhash & Saini, J.S., 2012. "Investigations on thermo-hydraulic performance due to flow-attack-angle in V-down rib with gap in a rectangular duct of solar air heater," Applied Energy, Elsevier, vol. 97(C), pages 907-912.
    16. Karmveer & Naveen Kumar Gupta & Tabish Alam & Raffaello Cozzolino & Gino Bella, 2022. "A Descriptive Review to Access the Most Suitable Rib’s Configuration of Roughness for the Maximum Performance of Solar Air Heater," Energies, MDPI, vol. 15(8), pages 1-46, April.
    17. Jin, Dongxu & Quan, Shenglin & Zuo, Jianguo & Xu, Shiming, 2019. "Numerical investigation of heat transfer enhancement in a solar air heater roughened by multiple V-shaped ribs," Renewable Energy, Elsevier, vol. 134(C), pages 78-88.
    18. Aviara, Ndubisi A. & Onuoha, Lovelyn N. & Falola, Oluwakemi E. & Igbeka, Joseph C., 2014. "Energy and exergy analyses of native cassava starch drying in a tray dryer," Energy, Elsevier, vol. 73(C), pages 809-817.
    19. El-Sebaii, A.A. & Aboul-Enein, S. & Ramadan, M.R.I. & Shalaby, S.M. & Moharram, B.M., 2011. "Thermal performance investigation of double pass-finned plate solar air heater," Applied Energy, Elsevier, vol. 88(5), pages 1727-1739, May.
    20. Abdelkader, Tarek Kh. & Sayed, Hassan A.A. & Refai, Mohamed & Ali, Mahmoud M. & Zhang, Yanlin & Wan, Q. & Khalifa, Ibrahim & Fan, Qizhou & Wang, Yunfeng & Abdelhamid, Mahmoud A., 2024. "Machine learning, mathematical modeling and 4E (energy, exergy, environmental, and economic) analysis of an indirect solar dryer for drying sweet potato," Renewable Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:101:y:2017:i:c:p:856-872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.