IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v235y2024ics0960148124013806.html
   My bibliography  Save this article

Optimization of thermal photovoltaic hybrid solar dryer for drying peanuts

Author

Listed:
  • Amirtharajan, Saranya
  • Loganathan, Karthikeyan
  • Mahalingam, Arulprakasajothi
  • Premkumar, Mani
  • Nadesan, Poyyamozhi

Abstract

The drying of agricultural products is traditionally carried out using solar radiation. However, this process is time-consuming and also unreliable in locations having cold and humid environments. This study experimentally investigates an innovative air collection system integrated with a dryer. The study focuses on the drying analysis of peanuts utilizing three operational modes of a solar dryer: forced convection, natural convection, and traditional open-sun drying. Key parameters including solar radiation intensity, moisture extraction, and outgoing air temperature from the collector were studied. Solar radiation served as the primary energy source, driving the solar dryer's operation within a drying air temperature range of 33 °C–58 °C, applied to 8 kg of peanuts. Initially, the peanuts exhibited a moisture content of 72 %. The developed solar dryer subsequently reduced the moisture content of the peanut by 18 %. The study evaluated three key aspects: electrical efficiency, thermal efficiency, and overall thermal efficiency of the proposed hybrid collector and solar dryer system, conducted from 9 a.m. to 4 p.m. Results indicate that the forced convection mode of solar drying outperformed the other modes, demonstrating superior effectiveness. These findings hold significant implications for the advancement of solar dryer technology, offering valuable insights for the wider solar drying community.

Suggested Citation

  • Amirtharajan, Saranya & Loganathan, Karthikeyan & Mahalingam, Arulprakasajothi & Premkumar, Mani & Nadesan, Poyyamozhi, 2024. "Optimization of thermal photovoltaic hybrid solar dryer for drying peanuts," Renewable Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124013806
    DOI: 10.1016/j.renene.2024.121312
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124013806
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121312?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124013806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.