IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v235y2024ics0960148124013806.html
   My bibliography  Save this article

Optimization of thermal photovoltaic hybrid solar dryer for drying peanuts

Author

Listed:
  • Amirtharajan, Saranya
  • Loganathan, Karthikeyan
  • Mahalingam, Arulprakasajothi
  • Premkumar, Mani
  • Nadesan, Poyyamozhi

Abstract

The drying of agricultural products is traditionally carried out using solar radiation. However, this process is time-consuming and also unreliable in locations having cold and humid environments. This study experimentally investigates an innovative air collection system integrated with a dryer. The study focuses on the drying analysis of peanuts utilizing three operational modes of a solar dryer: forced convection, natural convection, and traditional open-sun drying. Key parameters including solar radiation intensity, moisture extraction, and outgoing air temperature from the collector were studied. Solar radiation served as the primary energy source, driving the solar dryer's operation within a drying air temperature range of 33 °C–58 °C, applied to 8 kg of peanuts. Initially, the peanuts exhibited a moisture content of 72 %. The developed solar dryer subsequently reduced the moisture content of the peanut by 18 %. The study evaluated three key aspects: electrical efficiency, thermal efficiency, and overall thermal efficiency of the proposed hybrid collector and solar dryer system, conducted from 9 a.m. to 4 p.m. Results indicate that the forced convection mode of solar drying outperformed the other modes, demonstrating superior effectiveness. These findings hold significant implications for the advancement of solar dryer technology, offering valuable insights for the wider solar drying community.

Suggested Citation

  • Amirtharajan, Saranya & Loganathan, Karthikeyan & Mahalingam, Arulprakasajothi & Premkumar, Mani & Nadesan, Poyyamozhi, 2024. "Optimization of thermal photovoltaic hybrid solar dryer for drying peanuts," Renewable Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124013806
    DOI: 10.1016/j.renene.2024.121312
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124013806
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121312?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamdi, Ilhem & Kooli, Sami & Elkhadraoui, Aymen & Azaizia, Zaineb & Abdelhamid, Fadhel & Guizani, Amenallah, 2018. "Experimental study and numerical modeling for drying grapes under solar greenhouse," Renewable Energy, Elsevier, vol. 127(C), pages 936-946.
    2. Alta, Deniz & Bilgili, Emin & Ertekin, C. & Yaldiz, Osman, 2010. "Experimental investigation of three different solar air heaters: Energy and exergy analyses," Applied Energy, Elsevier, vol. 87(10), pages 2953-2973, October.
    3. Amori, Karima E. & Abd-AlRaheem, Mustafa Adil, 2014. "Field study of various air based photovoltaic/thermal hybrid solar collectors," Renewable Energy, Elsevier, vol. 63(C), pages 402-414.
    4. Hao, Wengang & Lu, Yifeng & Lai, Yanhua & Yu, Hongwen & Lyu, Mingxin, 2018. "Research on operation strategy and performance prediction of flat plate solar collector with dual-function for drying agricultural products," Renewable Energy, Elsevier, vol. 127(C), pages 685-696.
    5. Akpinar, Ebru Kavak & Koçyigit, Fatih, 2010. "Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates," Applied Energy, Elsevier, vol. 87(11), pages 3438-3450, November.
    6. Bahrehmand, D. & Ameri, M. & Gholampour, M., 2015. "Energy and exergy analysis of different solar air collector systems with forced convection," Renewable Energy, Elsevier, vol. 83(C), pages 1119-1130.
    7. Hedayatizadeh, Mahdi & Sarhaddi, Faramarz & Safavinejad, Ali & Ranjbar, Faramarz & Chaji, Hossein, 2016. "Exergy loss-based efficiency optimization of a double-pass/glazed v-corrugated plate solar air heater," Energy, Elsevier, vol. 94(C), pages 799-810.
    8. Sobhnamayan, F. & Sarhaddi, F. & Alavi, M.A. & Farahat, S. & Yazdanpanahi, J., 2014. "Optimization of a solar photovoltaic thermal (PV/T) water collector based on exergy concept," Renewable Energy, Elsevier, vol. 68(C), pages 356-365.
    9. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    10. Bahrehmand, D. & Ameri, M., 2015. "Energy and exergy analysis of different solar air collector systems with natural convection," Renewable Energy, Elsevier, vol. 74(C), pages 357-368.
    11. Karthikeyan, A.K. & Murugavelh, S., 2018. "Thin layer drying kinetics and exergy analysis of turmeric (Curcuma longa) in a mixed mode forced convection solar tunnel dryer," Renewable Energy, Elsevier, vol. 128(PA), pages 305-312.
    12. Sabzpooshani, M. & Mohammadi, K. & Khorasanizadeh, H., 2014. "Exergetic performance evaluation of a single pass baffled solar air heater," Energy, Elsevier, vol. 64(C), pages 697-706.
    13. Maia, Cristiana Brasil & Ferreira, André Guimarães & Cabezas-Gómez, Luben & de Oliveira Castro Silva, Janaína & de Morais Hanriot, Sérgio, 2017. "Thermodynamic analysis of the drying process of bananas in a small-scale solar updraft tower in Brazil," Renewable Energy, Elsevier, vol. 114(PB), pages 1005-1012.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kalaiarasi, G. & Velraj, R. & Swami, Muthusamy V., 2016. "Experimental energy and exergy analysis of a flat plate solar air heater with a new design of integrated sensible heat storage," Energy, Elsevier, vol. 111(C), pages 609-619.
    2. Yao, Muchi & Li, Ming & Wang, Yunfeng & Li, Guoliang & Zhang, Ying & Gao, Meng & Deng, Zhihan & Xing, Tianyu & Zhang, Zude & Zhang, Wenxiang, 2023. "Analysis on characteristics and operation mode of direct solar collector coupled heat pump drying system," Renewable Energy, Elsevier, vol. 206(C), pages 223-238.
    3. Ural, Tolga, 2019. "Experimental performance assessment of a new flat-plate solar air collector having textile fabric as absorber using energy and exergy analyses," Energy, Elsevier, vol. 188(C).
    4. Tarek Kh. Abdelkader & Qizhou Fan & Eid S. Gaballah & Shaowei Wang & Yanlin Zhang, 2020. "Energy and Exergy Analysis of a Flat-Plate Solar Air Heater Artificially Roughened and Coated with a Novel Solar Selective Coating," Energies, MDPI, vol. 13(4), pages 1-17, February.
    5. Kalogirou, Soteris A. & Karellas, Sotirios & Badescu, Viorel & Braimakis, Konstantinos, 2016. "Exergy analysis on solar thermal systems: A better understanding of their sustainability," Renewable Energy, Elsevier, vol. 85(C), pages 1328-1333.
    6. Arabhosseini, Akbar & Samimi-Akhijahani, Hadi & Motahayyer, Mehrnosh, 2019. "Increasing the energy and exergy efficiencies of a collector using porous and recycling system," Renewable Energy, Elsevier, vol. 132(C), pages 308-325.
    7. Rabha, D.K. & Muthukumar, P. & Somayaji, C., 2017. "Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger," Renewable Energy, Elsevier, vol. 105(C), pages 764-773.
    8. Debnath, Suman & Das, Biplab & Randive, P.R. & Pandey, K.M., 2018. "Performance analysis of solar air collector in the climatic condition of North Eastern India," Energy, Elsevier, vol. 165(PB), pages 281-298.
    9. Ali Hassan & Ali M. Nikbakht & Sabrina Fawzia & Prasad Yarlagadda & Azharul Karim, 2024. "A Comprehensive Review of the Thermohydraulic Improvement Potentials in Solar Air Heaters through an Energy and Exergy Analysis," Energies, MDPI, vol. 17(7), pages 1-43, March.
    10. Camilo Ramirez & Mario Palacio & Mauricio Carmona, 2020. "Reduced Model and Comparative Analysis of the Thermal Performance of Indirect Solar Dryer with and without PCM," Energies, MDPI, vol. 13(20), pages 1-18, October.
    11. Elbreki, A.M. & Alghoul, M.A. & Al-Shamani, A.N. & Ammar, A.A. & Yegani, Bita & Aboghrara, Alsanossi M. & Rusaln, M.H. & Sopian, K., 2016. "The role of climatic-design-operational parameters on combined PV/T collector performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 602-647.
    12. Yu Wang & Mikael Boulic & Robyn Phipps & Manfred Plagmann & Chris Cunningham, 2020. "Experimental Performance of a Solar Air Collector with a Perforated Back Plate in New Zealand," Energies, MDPI, vol. 13(6), pages 1-16, March.
    13. Abdelkader, Tarek Kh. & Sayed, Hassan A.A. & Refai, Mohamed & Ali, Mahmoud M. & Zhang, Yanlin & Wan, Q. & Khalifa, Ibrahim & Fan, Qizhou & Wang, Yunfeng & Abdelhamid, Mahmoud A., 2024. "Machine learning, mathematical modeling and 4E (energy, exergy, environmental, and economic) analysis of an indirect solar dryer for drying sweet potato," Renewable Energy, Elsevier, vol. 227(C).
    14. Thapa, Sashank & Kumar, Raj & Lee, Daeho, 2024. "Energetic and exergetic analysis of jet impingement solar thermal collector featuring discrete multi-arc shaped ribs absorber surface," Energy, Elsevier, vol. 306(C).
    15. Kumar, P. Manoj & Mylsamy, K., 2020. "A comprehensive study on thermal storage characteristics of nano-CeO2 embedded phase change material and its influence on the performance of evacuated tube solar water heater," Renewable Energy, Elsevier, vol. 162(C), pages 662-676.
    16. Baibhaw Kumar & Gábor Szepesi & Zoltán Szamosi & Gyula Krámer, 2023. "Analysis of a Combined Solar Drying System for Wood-Chips, Sawdust, and Pellets," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    17. Kareem, M.W. & Habib, Khairul & Ruslan, M.H. & Saha, Bidyut Baran, 2017. "Thermal performance study of a multi-pass solar air heating collector system for drying of Roselle (Hibiscus sabdariffa)," Renewable Energy, Elsevier, vol. 113(C), pages 281-292.
    18. Zheng, Jiayi & Wang, Jing & Chen, Taotao & Yu, Yanshun, 2020. "Solidification performance of heat exchanger with tree-shaped fins," Renewable Energy, Elsevier, vol. 150(C), pages 1098-1107.
    19. Baljit, S.S.S. & Chan, H.-Y. & Audwinto, V.A. & Hamid, S.A. & Fudholi, Ahmad & Zaidi, S.H. & Othman, M.Y. & Sopian, K., 2017. "Mathematical modelling of a dual-fluid concentrating photovoltaic-thermal (PV-T) solar collector," Renewable Energy, Elsevier, vol. 114(PB), pages 1258-1271.
    20. Prasad, Jay Shankar & Datta, Aparesh & Mondal, Sirshendu, 2024. "Flow and thermal behavior of solar air heater with grooved roughness," Renewable Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124013806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.