IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v95y2010i8p866-873.html
   My bibliography  Save this article

Reliability concepts applied to cutting tool change time

Author

Listed:
  • Patiño Rodriguez, Carmen Elena
  • Francisco Martha de Souza, Gilberto

Abstract

This paper presents a reliability-based analysis for calculating critical tool life in machining processes. It is possible to determine the running time for each tool involved in the process by obtaining the operations sequence for the machining procedure. Usually, the reliability of an operation depends on three independent factors: operator, machine-tool and cutting tool. The reliability of a part manufacturing process is mainly determined by the cutting time for each job and by the sequence of operations, defined by the series configuration. An algorithm is presented to define when the cutting tool must be changed. The proposed algorithm is used to evaluate the reliability of a manufacturing process composed of turning and drilling operations. The reliability of the turning operation is modeled based on data presented in the literature, and from experimental results, a statistical distribution of drilling tool wear was defined, and the reliability of the drilling process was modeled.

Suggested Citation

  • Patiño Rodriguez, Carmen Elena & Francisco Martha de Souza, Gilberto, 2010. "Reliability concepts applied to cutting tool change time," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 866-873.
  • Handle: RePEc:eee:reensy:v:95:y:2010:i:8:p:866-873
    DOI: 10.1016/j.ress.2010.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832010000712
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2010.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Jen-Shiang, 2008. "Optimization models for the tool change scheduling problem," Omega, Elsevier, vol. 36(5), pages 888-894, October.
    2. Ecker, K. H. & Gupta, J. N. D., 2005. "Scheduling tasks on a flexible manufacturing machine to minimize tool change delays," European Journal of Operational Research, Elsevier, vol. 164(3), pages 627-638, August.
    3. Akturk, M. Selim & Ghosh, Jay B. & Gunes, Evrim D., 2004. "Scheduling with tool changes to minimize total completion time: Basic results and SPT performance," European Journal of Operational Research, Elsevier, vol. 157(3), pages 784-790, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdoulaye Diamoutene & Farid Noureddine & Rachid Noureddine & Bernard Kamsu-Foguem & Diakarya Barro, 2020. "Proportional hazard model for cutting tool recovery in machining," Journal of Risk and Reliability, , vol. 234(2), pages 322-332, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Dehua & Liu, Min & Yin, Yunqiang & Hao, Jinghua, 2013. "Scheduling tool changes and special jobs on a single machine to minimize makespan," Omega, Elsevier, vol. 41(2), pages 299-304.
    2. Xu, Dehua & Wan, Long & Liu, Aihua & Yang, Dar-Li, 2015. "Single machine total completion time scheduling problem with workload-dependent maintenance duration," Omega, Elsevier, vol. 52(C), pages 101-106.
    3. Zhijun Xu & Dehua Xu, 2018. "Single-machine scheduling with workload-dependent tool change durations and equal processing time jobs to minimize total completion time," Journal of Scheduling, Springer, vol. 21(4), pages 461-482, August.
    4. A Janiak & R Rudek, 2010. "Scheduling jobs under an aging effect," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(6), pages 1041-1048, June.
    5. Yang, Suh-Jenq & Yang, Dar-Li, 2010. "Minimizing the makespan on single-machine scheduling with aging effect and variable maintenance activities," Omega, Elsevier, vol. 38(6), pages 528-533, December.
    6. J S Chen, 2006. "Single-machine scheduling with flexible and periodic maintenance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 703-710, June.
    7. Janiak, Adam & Rudek, RadosLaw, 2010. "A note on a makespan minimization problem with a multi-ability learning effect," Omega, Elsevier, vol. 38(3-4), pages 213-217, June.
    8. Chen, Jen-Shiang, 2008. "Optimization models for the tool change scheduling problem," Omega, Elsevier, vol. 36(5), pages 888-894, October.
    9. Sun, Kaibiao & Li, Hongxing, 2010. "Scheduling problems with multiple maintenance activities and non-preemptive jobs on two identical parallel machines," International Journal of Production Economics, Elsevier, vol. 124(1), pages 151-158, March.
    10. Cha, Young-Ho & Kim, Yeong-Dae, 2010. "Fire scheduling for planned artillery attack operations under time-dependent destruction probabilities," Omega, Elsevier, vol. 38(5), pages 383-392, October.
    11. Maciej Drozdowski & Florian Jaehn & Radosław Paszkowski, 2017. "Scheduling Position-Dependent Maintenance Operations," Operations Research, INFORMS, vol. 65(6), pages 1657-1677, December.
    12. Jing Fan & Xiwen Lu, 2015. "Supply chain scheduling problem in the hospital with periodic working time on a single machine," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 892-905, November.
    13. Rustogi, Kabir & Strusevich, Vitaly A., 2012. "Single machine scheduling with general positional deterioration and rate-modifying maintenance," Omega, Elsevier, vol. 40(6), pages 791-804.
    14. Diane E. Bailey & Paul M. Leonardi & Jan Chong, 2010. "Minding the Gaps: Understanding Technology Interdependence and Coordination in Knowledge Work," Organization Science, INFORMS, vol. 21(3), pages 713-730, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:95:y:2010:i:8:p:866-873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.