IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v318y2024i2p388-397.html
   My bibliography  Save this article

Scheduling with jobs at fixed positions

Author

Listed:
  • Jaehn, Florian

Abstract

In this paper, we study classical single machine scheduling problems with the additional constraint that a set of special jobs must be scheduled at certain positions in the job sequence. In other words, a special job must start when a certain number of jobs have finished on the machine. We analyze several classical objective functions for this more general setting with the additional constraint of fixed positioned jobs. We show that for some of them they are still polynomially solvable. Then, we focus on the objective of minimizing the number of tardy jobs. Considering the case of just one special job, this allows for a polynomial-time algorithm.

Suggested Citation

  • Jaehn, Florian, 2024. "Scheduling with jobs at fixed positions," European Journal of Operational Research, Elsevier, vol. 318(2), pages 388-397.
  • Handle: RePEc:eee:ejores:v:318:y:2024:i:2:p:388-397
    DOI: 10.1016/j.ejor.2024.05.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724003886
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.05.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liliana Grigoriu & Dirk Briskorn, 2017. "Scheduling jobs and maintenance activities subject to job-dependent machine deteriorations," Journal of Scheduling, Springer, vol. 20(2), pages 183-197, April.
    2. Péter Györgyi & Tamás Kis, 2015. "Approximability of scheduling problems with resource consuming jobs," Annals of Operations Research, Springer, vol. 235(1), pages 319-336, December.
    3. Maciej Drozdowski & Florian Jaehn & Radosław Paszkowski, 2017. "Scheduling Position-Dependent Maintenance Operations," Operations Research, INFORMS, vol. 65(6), pages 1657-1677, December.
    4. D Briskorn & J Y-T Leung, 2013. "Minimizing maximum lateness of jobs in inventory constrained scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(12), pages 1851-1864, December.
    5. J. Michael Moore, 1968. "An n Job, One Machine Sequencing Algorithm for Minimizing the Number of Late Jobs," Management Science, INFORMS, vol. 15(1), pages 102-109, September.
    6. Blazewicz, Jacek & Dell'Olmo, Paolo & Drozdowski, Maciej & Maczka, Przemyslaw, 2003. "Scheduling multiprocessor tasks on parallel processors with limited availability," European Journal of Operational Research, Elsevier, vol. 149(2), pages 377-389, September.
    7. A Bachman & A Janiak, 2004. "Scheduling jobs with position-dependent processing times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(3), pages 257-264, March.
    8. Briskorn, Dirk & Choi, Byung-Cheon & Lee, Kangbok & Leung, Joseph & Pinedo, Michael, 2010. "Complexity of single machine scheduling subject to nonnegative inventory constraints," European Journal of Operational Research, Elsevier, vol. 207(2), pages 605-619, December.
    9. M. A. Kubzin & V. A. Strusevich, 2006. "Planning Machine Maintenance in Two-Machine Shop Scheduling," Operations Research, INFORMS, vol. 54(4), pages 789-800, August.
    10. Chen, Jen-Shiang, 2008. "Optimization models for the tool change scheduling problem," Omega, Elsevier, vol. 36(5), pages 888-894, October.
    11. Rustogi, Kabir & Strusevich, Vitaly A., 2012. "Simple matching vs linear assignment in scheduling models with positional effects: A critical review," European Journal of Operational Research, Elsevier, vol. 222(3), pages 393-407.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maciej Drozdowski & Florian Jaehn & Radosław Paszkowski, 2017. "Scheduling Position-Dependent Maintenance Operations," Operations Research, INFORMS, vol. 65(6), pages 1657-1677, December.
    2. Yang, Suh-Jenq & Yang, Dar-Li, 2010. "Minimizing the makespan on single-machine scheduling with aging effect and variable maintenance activities," Omega, Elsevier, vol. 38(6), pages 528-533, December.
    3. Rustogi, Kabir & Strusevich, Vitaly A., 2012. "Single machine scheduling with general positional deterioration and rate-modifying maintenance," Omega, Elsevier, vol. 40(6), pages 791-804.
    4. Gara-Ali, Ahmed & Finke, Gerd & Espinouse, Marie-Laure, 2016. "Parallel-machine scheduling with maintenance: Praising the assignment problem," European Journal of Operational Research, Elsevier, vol. 252(1), pages 90-97.
    5. Davari, Morteza & Ranjbar, Mohammad & De Causmaecker, Patrick & Leus, Roel, 2020. "Minimizing makespan on a single machine with release dates and inventory constraints," European Journal of Operational Research, Elsevier, vol. 286(1), pages 115-128.
    6. Györgyi, Péter & Kis, Tamás, 2017. "Approximation schemes for parallel machine scheduling with non-renewable resources," European Journal of Operational Research, Elsevier, vol. 258(1), pages 113-123.
    7. Gehring, Marco & Volk, Rebekka & Schultmann, Frank, 2022. "On the integration of diverging material flows into resource‐constrained project scheduling," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1071-1087.
    8. Hui Zhu & Min Li & Zhangjin Zhou & Yun You, 2016. "Due-window assignment and scheduling with general position-dependent processing times involving a deteriorating and compressible maintenance activity," International Journal of Production Research, Taylor & Francis Journals, vol. 54(12), pages 3475-3490, June.
    9. Rupp, Johannes & Boysen, Nils & Briskorn, Dirk, 2022. "Optimizing consolidation processes in hubs: The hub-arrival-departure problem," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1051-1066.
    10. Geurtsen, M. & Didden, Jeroen B.H.C. & Adan, J. & Atan, Z. & Adan, I., 2023. "Production, maintenance and resource scheduling: A review," European Journal of Operational Research, Elsevier, vol. 305(2), pages 501-529.
    11. Briskorn, Dirk & Gönsch, Jochen & Thiemeyer, Antonia, 2024. "Scheduling maintenance activities subject to stochastic job-dependent machine deterioration," European Journal of Operational Research, Elsevier, vol. 319(1), pages 62-78.
    12. Rustogi, Kabir & Strusevich, Vitaly A., 2012. "Simple matching vs linear assignment in scheduling models with positional effects: A critical review," European Journal of Operational Research, Elsevier, vol. 222(3), pages 393-407.
    13. Wang, J.-B. & Ng, C.T. & Cheng, T.C.E. & Liu, L.L., 2008. "Single-machine scheduling with a time-dependent learning effect," International Journal of Production Economics, Elsevier, vol. 111(2), pages 802-811, February.
    14. Chen, Bo & Zhang, Xiandong, 2019. "Scheduling with time-of-use costs," European Journal of Operational Research, Elsevier, vol. 274(3), pages 900-908.
    15. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.
    16. Wu, Lingxiao & Wang, Shuaian, 2018. "Exact and heuristic methods to solve the parallel machine scheduling problem with multi-processor tasks," International Journal of Production Economics, Elsevier, vol. 201(C), pages 26-40.
    17. Ferreira, Cristiane & Figueira, Gonçalo & Amorim, Pedro, 2021. "Scheduling Human-Robot Teams in collaborative working cells," International Journal of Production Economics, Elsevier, vol. 235(C).
    18. Janiak, Adam & Krysiak, Tomasz, 2012. "Scheduling jobs with values dependent on their completion times," International Journal of Production Economics, Elsevier, vol. 135(1), pages 231-241.
    19. Luo, Wenchang & Liu, Feng, 2017. "On single-machine scheduling with workload-dependent maintenance duration," Omega, Elsevier, vol. 68(C), pages 119-122.
    20. Liao, Lu-Wen & Sheen, Gwo-Ji, 2008. "Parallel machine scheduling with machine availability and eligibility constraints," European Journal of Operational Research, Elsevier, vol. 184(2), pages 458-467, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:318:y:2024:i:2:p:388-397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.