IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v38y2010i6p528-533.html
   My bibliography  Save this article

Minimizing the makespan on single-machine scheduling with aging effect and variable maintenance activities

Author

Listed:
  • Yang, Suh-Jenq
  • Yang, Dar-Li

Abstract

This paper considers a single-machine scheduling with a position-dependent aging effect described by a power function under maintenance activities and variable maintenance duration considerations simultaneously. We examine two models of the maintenance duration in this study. The objective is to find jointly the optimal maintenance frequency, the optimal maintenance positions, and the optimal job sequences to minimize the makespan of all jobs. We provided polynomial time solution algorithms for all the studied problems.

Suggested Citation

  • Yang, Suh-Jenq & Yang, Dar-Li, 2010. "Minimizing the makespan on single-machine scheduling with aging effect and variable maintenance activities," Omega, Elsevier, vol. 38(6), pages 528-533, December.
  • Handle: RePEc:eee:jomega:v:38:y:2010:i:6:p:528-533
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(10)00004-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wen-Jinn, 2009. "Minimizing number of tardy jobs on a single machine subject to periodic maintenance," Omega, Elsevier, vol. 37(3), pages 591-599, June.
    2. W-H Kuo & D-L Yang, 2008. "Minimizing the makespan in a single-machine scheduling problem with the cyclic process of an aging effect," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(3), pages 416-420, March.
    3. Schmidt, Gunter, 2000. "Scheduling with limited machine availability," European Journal of Operational Research, Elsevier, vol. 121(1), pages 1-15, February.
    4. Cheng, T. C. E. & Ding, Q. & Lin, B. M. T., 2004. "A concise survey of scheduling with time-dependent processing times," European Journal of Operational Research, Elsevier, vol. 152(1), pages 1-13, January.
    5. B Alidaee & N K Womer, 1999. "Scheduling with time dependent processing times: Review and extensions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(7), pages 711-720, July.
    6. Lee, Wen-Chiung & Wu, Chin-Chia & Hsu, Peng-Hsiang, 2010. "A single-machine learning effect scheduling problem with release times," Omega, Elsevier, vol. 38(1-2), pages 3-11, February.
    7. Gawiejnowicz, Stanislaw & Kononov, Alexander, 2010. "Complexity and approximability of scheduling resumable proportionally deteriorating jobs," European Journal of Operational Research, Elsevier, vol. 200(1), pages 305-308, January.
    8. Biskup, Dirk, 1999. "Single-machine scheduling with learning considerations," European Journal of Operational Research, Elsevier, vol. 115(1), pages 173-178, May.
    9. A Bachman & A Janiak, 2004. "Scheduling jobs with position-dependent processing times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(3), pages 257-264, March.
    10. Gawiejnowicz, Stanislaw, 2007. "Scheduling deteriorating jobs subject to job or machine availability constraints," European Journal of Operational Research, Elsevier, vol. 180(1), pages 472-478, July.
    11. Biskup, Dirk, 2008. "A state-of-the-art review on scheduling with learning effects," European Journal of Operational Research, Elsevier, vol. 188(2), pages 315-329, July.
    12. M. A. Kubzin & V. A. Strusevich, 2006. "Planning Machine Maintenance in Two-Machine Shop Scheduling," Operations Research, INFORMS, vol. 54(4), pages 789-800, August.
    13. Chen, Jen-Shiang, 2008. "Optimization models for the tool change scheduling problem," Omega, Elsevier, vol. 36(5), pages 888-894, October.
    14. Lodree Jr., Emmett J. & Geiger, Christopher D., 2010. "A note on the optimal sequence position for a rate-modifying activity under simple linear deterioration," European Journal of Operational Research, Elsevier, vol. 201(2), pages 644-648, March.
    15. Adam Janiak & Radosław Rudek, 2008. "Complexity results for single-machine scheduling with positional learning effects," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(10), pages 1430-1430, October.
    16. Janiak, Adam & Rudek, RadosLaw, 2010. "A note on a makespan minimization problem with a multi-ability learning effect," Omega, Elsevier, vol. 38(3-4), pages 213-217, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeang, Angus, 2012. "Simultaneous determination of production lot size and process parameters under process deterioration and process breakdown," Omega, Elsevier, vol. 40(6), pages 774-781.
    2. Liliana Grigoriu & Dirk Briskorn, 2017. "Scheduling jobs and maintenance activities subject to job-dependent machine deteriorations," Journal of Scheduling, Springer, vol. 20(2), pages 183-197, April.
    3. Wenchang Luo & Yao Xu & Weitian Tong & Guohui Lin, 2019. "Single-machine scheduling with job-dependent machine deterioration," Journal of Scheduling, Springer, vol. 22(6), pages 691-707, December.
    4. Shang-Chia Liu, 2015. "Common Due-Window Assignment and Group Scheduling with Position-Dependent Processing Times," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(06), pages 1-19, December.
    5. Finke, Gerd & Gara-Ali, Ahmed & Espinouse, Marie-Laure & Jost, Vincent & Moncel, Julien, 2017. "Unified matrix approach to solve production-maintenance problems on a single machine," Omega, Elsevier, vol. 66(PA), pages 140-146.
    6. Norelhouda Sekkal & Fayçal Belkaid, 2020. "A multi-objective simulated annealing to solve an identical parallel machine scheduling problem with deterioration effect and resources consumption constraints," Journal of Combinatorial Optimization, Springer, vol. 40(3), pages 660-696, October.
    7. Zhang Xingong & Wang Yong & Bai Shikun, 2016. "Single-machine group scheduling problems with deteriorating and learning effect," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(10), pages 2402-2410, July.
    8. Jin Qian & Yu Zhan, 2022. "Single-Machine Group Scheduling Model with Position-Dependent and Job-Dependent DeJong’s Learning Effect," Mathematics, MDPI, vol. 10(14), pages 1-9, July.
    9. Gara-Ali, Ahmed & Finke, Gerd & Espinouse, Marie-Laure, 2016. "Parallel-machine scheduling with maintenance: Praising the assignment problem," European Journal of Operational Research, Elsevier, vol. 252(1), pages 90-97.
    10. Mor, Baruch & Mosheiov, Gur, 2012. "Scheduling a maintenance activity and due-window assignment based on common flow allowance," International Journal of Production Economics, Elsevier, vol. 135(1), pages 222-230.
    11. Xu, Dehua & Wan, Long & Liu, Aihua & Yang, Dar-Li, 2015. "Single machine total completion time scheduling problem with workload-dependent maintenance duration," Omega, Elsevier, vol. 52(C), pages 101-106.
    12. Norelhouda Sekkal & Fayçal Belkaid, 0. "A multi-objective simulated annealing to solve an identical parallel machine scheduling problem with deterioration effect and resources consumption constraints," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-37.
    13. Anna Arigliano & Gianpaolo Ghiani & Antonio Grieco & Emanuela Guerriero, 2017. "Single-machine time-dependent scheduling problems with fixed rate-modifying activities and resumable jobs," 4OR, Springer, vol. 15(2), pages 201-215, June.
    14. Sterna, Malgorzata, 2011. "A survey of scheduling problems with late work criteria," Omega, Elsevier, vol. 39(2), pages 120-129, April.
    15. Radosław Rudek, 2012. "Scheduling problems with position dependent job processing times: computational complexity results," Annals of Operations Research, Springer, vol. 196(1), pages 491-516, July.
    16. Berthaut, F. & Gharbi, A. & Dhouib, K., 2011. "Joint modified block replacement and production/inventory control policy for a failure-prone manufacturing cell," Omega, Elsevier, vol. 39(6), pages 642-654, December.
    17. Rustogi, Kabir & Strusevich, Vitaly A., 2012. "Simple matching vs linear assignment in scheduling models with positional effects: A critical review," European Journal of Operational Research, Elsevier, vol. 222(3), pages 393-407.
    18. Rustogi, Kabir & Strusevich, Vitaly A., 2012. "Single machine scheduling with general positional deterioration and rate-modifying maintenance," Omega, Elsevier, vol. 40(6), pages 791-804.
    19. Yang, Dar-Li & Lai, Chien-Jung & Yang, Suh-Jenq, 2014. "Scheduling problems with multiple due windows assignment and controllable processing times on a single machine," International Journal of Production Economics, Elsevier, vol. 150(C), pages 96-103.
    20. Hans Kellerer & Vitaly A. Strusevich, 2016. "Optimizing the half-product and related quadratic Boolean functions: approximation and scheduling applications," Annals of Operations Research, Springer, vol. 240(1), pages 39-94, May.
    21. Lu Liu & Jian-Jun Wang & Xiao-Yuan Wang, 2016. "Single machine due-window assignment scheduling with resource-dependent processing times to minimise total resource consumption cost," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 1186-1195, February.
    22. Turabieh, Hamza & Abdullah, Salwani, 2011. "An integrated hybrid approach to the examination timetabling problem," Omega, Elsevier, vol. 39(6), pages 598-607, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rustogi, Kabir & Strusevich, Vitaly A., 2012. "Single machine scheduling with general positional deterioration and rate-modifying maintenance," Omega, Elsevier, vol. 40(6), pages 791-804.
    2. Rustogi, Kabir & Strusevich, Vitaly A., 2012. "Simple matching vs linear assignment in scheduling models with positional effects: A critical review," European Journal of Operational Research, Elsevier, vol. 222(3), pages 393-407.
    3. Hui Zhu & Min Li & Zhangjin Zhou & Yun You, 2016. "Due-window assignment and scheduling with general position-dependent processing times involving a deteriorating and compressible maintenance activity," International Journal of Production Research, Taylor & Francis Journals, vol. 54(12), pages 3475-3490, June.
    4. Radosław Rudek, 2012. "Scheduling problems with position dependent job processing times: computational complexity results," Annals of Operations Research, Springer, vol. 196(1), pages 491-516, July.
    5. Lai, Peng-Jen & Lee, Wen-Chiung, 2011. "Single-machine scheduling with general sum-of-processing-time-based and position-based learning effects," Omega, Elsevier, vol. 39(5), pages 467-471, October.
    6. Cheng, T.C.E. & Wu, Chin-Chia & Chen, Juei-Chao & Wu, Wen-Hsiang & Cheng, Shuenn-Ren, 2013. "Two-machine flowshop scheduling with a truncated learning function to minimize the makespan," International Journal of Production Economics, Elsevier, vol. 141(1), pages 79-86.
    7. Stanisław Gawiejnowicz, 2020. "A review of four decades of time-dependent scheduling: main results, new topics, and open problems," Journal of Scheduling, Springer, vol. 23(1), pages 3-47, February.
    8. Maciej Drozdowski & Florian Jaehn & Radosław Paszkowski, 2017. "Scheduling Position-Dependent Maintenance Operations," Operations Research, INFORMS, vol. 65(6), pages 1657-1677, December.
    9. Min Ji & Chou-Jung Hsu & Dar-Li Yang, 2013. "Single-machine scheduling with deteriorating jobs and aging effects under an optional maintenance activity consideration," Journal of Combinatorial Optimization, Springer, vol. 26(3), pages 437-447, October.
    10. Li, Shisheng & Ng, C.T. & Cheng, T.C.E. & Yuan, Jinjiang, 2011. "Parallel-batch scheduling of deteriorating jobs with release dates to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 210(3), pages 482-488, May.
    11. Finke, Gerd & Gara-Ali, Ahmed & Espinouse, Marie-Laure & Jost, Vincent & Moncel, Julien, 2017. "Unified matrix approach to solve production-maintenance problems on a single machine," Omega, Elsevier, vol. 66(PA), pages 140-146.
    12. Dar-Li Yang & Wen-Hung Kuo, 2009. "Single-machine scheduling with both deterioration and learning effects," Annals of Operations Research, Springer, vol. 172(1), pages 315-327, November.
    13. A. Beynaghi & F. Moztarzadeh & A. Shahmardan & R. Alizadeh & J. Salimi & M. Mozafari, 2019. "Makespan minimization for batching work and rework process on a single facility with an aging effect: a hybrid meta-heuristic algorithm for sustainable production management," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 33-45, January.
    14. Wen-Hung Wu & Yunqiang Yin & T C E Cheng & Win-Chin Lin & Juei-Chao Chen & Shin-Yi Luo & Chin-Chia Wu, 2017. "A combined approach for two-agent scheduling with sum-of-processing-times-based learning effect," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(2), pages 111-120, February.
    15. Cheng, T.C.E. & Shafransky, Y. & Ng, C.T., 2016. "An alternative approach for proving the NP-hardness of optimization problems," European Journal of Operational Research, Elsevier, vol. 248(1), pages 52-58.
    16. S Gawiejnowicz & W-C Lee & C-L Lin & C-C Wu, 2011. "Single-machine scheduling of proportionally deteriorating jobs by two agents," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 1983-1991, November.
    17. Janiak, Adam & Rudek, RadosLaw, 2010. "A note on a makespan minimization problem with a multi-ability learning effect," Omega, Elsevier, vol. 38(3-4), pages 213-217, June.
    18. Bai, Danyu & Tang, Mengqian & Zhang, Zhi-Hai & Santibanez-Gonzalez, Ernesto DR, 2018. "Flow shop learning effect scheduling problem with release dates," Omega, Elsevier, vol. 78(C), pages 21-38.
    19. W-H Kuo & D-L Yang, 2008. "Minimizing the makespan in a single-machine scheduling problem with the cyclic process of an aging effect," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(3), pages 416-420, March.
    20. Kai-biao Sun & Hong-xing Li, 2009. "Some single-machine scheduling problems with actual time and position dependent learning effects," Fuzzy Information and Engineering, Springer, vol. 1(2), pages 161-177, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:38:y:2010:i:6:p:528-533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.