IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v7y2016i1d10.1007_s13198-014-0300-z.html
   My bibliography  Save this article

Reliability assessment and improvement of digital protective relays

Author

Listed:
  • Abdelkader Abdelmoumene

    (UMBB University)

  • Hamid Bentarzi

    (UMBB University)

  • Mahfoud Chafai

    (UMBB University)

  • Abderrahmane Ouadi

    (UMBB University)

Abstract

The development of digital protective relays is considered as a real revolution in the field of power system protection. This is due to their wonderful features not available with older relay generations such as: multifunction, compactness, communication…etc. However, many experts have expressed their anxieties about the reliability of this kind of relays. In this paper, an analytical approach allowing the reliability assessment of digital protective relay has been presented. First, the different failure modes (common cause failures) have been discussed. Then, reliability modeling and evaluation has been developed in order to identify the points of weakness in digital relays. Subsequently, the measures that may be taken to prevent CCFs and enhance the reliability has been proposed and analyzed.

Suggested Citation

  • Abdelkader Abdelmoumene & Hamid Bentarzi & Mahfoud Chafai & Abderrahmane Ouadi, 2016. "Reliability assessment and improvement of digital protective relays," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(1), pages 62-69, December.
  • Handle: RePEc:spr:ijsaem:v:7:y:2016:i:1:d:10.1007_s13198-014-0300-z
    DOI: 10.1007/s13198-014-0300-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-014-0300-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-014-0300-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toshio Nakagawa, 2005. "Maintenance Theory of Reliability," Springer Series in Reliability Engineering, Springer, number 978-1-84628-221-8, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    2. Ali, Sajid & Pievatolo, Antonio, 2018. "Time and magnitude monitoring based on the renewal reward process," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 97-107.
    3. Torrado, Nuria, 2022. "Optimal component-type allocation and replacement time policies for parallel systems having multi-types dependent components," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    4. Ji Hwan Cha & Maxim Finkelstein, 2020. "On optimal life extension for degrading systems," Journal of Risk and Reliability, , vol. 234(3), pages 487-495, June.
    5. Zheng, Junjun & Okamura, Hiroyuki & Dohi, Tadashi, 2021. "Age replacement with Markovian opportunity process," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. M D Pandey & T Cheng & J A M van der Weide, 2011. "Finite-time maintenance cost analysis of engineering systems affected by stochastic degradation," Journal of Risk and Reliability, , vol. 225(2), pages 241-250, June.
    7. Fu-Min Chang & Yu-Hung Chien, 2012. "Optimal Discrete-Time Periodic Replacement Policy For Repairable Products Under Free Minimal Repair Warranty," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 29(03), pages 1-14.
    8. Doostparast, Mohammad & Kolahan, Farhad & Doostparast, Mahdi, 2014. "A reliability-based approach to optimize preventive maintenance scheduling for coherent systems," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 98-106.
    9. Abdolsaeed Toomaj & Antonio Di Crescenzo, 2020. "Connections between Weighted Generalized Cumulative Residual Entropy and Variance," Mathematics, MDPI, vol. 8(7), pages 1-27, July.
    10. Eryilmaz, Serkan & Ozkut, Murat, 2020. "Optimization problems for a parallel system with multiple types of dependent components," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    11. Badía, F.G. & Berrade, M.D. & Cha, Ji Hwan & Lee, Hyunju, 2018. "Optimal replacement policy under a general failure and repair model: Minimal versus worse than old repair," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 362-372.
    12. Zhang, Qin & Fang, Zhigeng & Cai, Jiajia, 2021. "Preventive replacement policies with multiple missions and maintenance triggering approaches," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    13. XiaoFei, Lu & Min, Liu, 2014. "Hazard rate function in dynamic environment," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 50-60.
    14. Yasuhiro Saito & Tadashi Dohi & Won Y Yun, 2016. "Kernel-based nonparametric estimation methods for a periodic replacement problem with minimal repair," Journal of Risk and Reliability, , vol. 230(1), pages 54-66, February.
    15. Hennie Husniah & Asep K. Supriatna, 2021. "Computing the Number of Failures for Fuzzy Weibull Hazard Function," Mathematics, MDPI, vol. 9(22), pages 1-19, November.
    16. Stanisław Duer & Jan Valicek & Jacek Paś & Marek Stawowy & Dariusz Bernatowicz & Radosław Duer & Marcin Walczak, 2021. "Neural Networks in the Diagnostics Process of Low-Power Solar Plant Devices," Energies, MDPI, vol. 14(9), pages 1-18, May.
    17. Somayyeh Shahraki Dehsoukhteh & Mostafa Razmkhah & Bruno Castanier, 2024. "Optimal block replacement based on expert judgement method," Journal of Risk and Reliability, , vol. 238(3), pages 591-603, June.
    18. Hamidi, Maryam & Szidarovszky, Ferenc & Szidarovszky, Miklos, 2016. "New one cycle criteria for optimizing preventive replacement policies," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 42-48.
    19. Sheu, Shey-Huei & Tsai, Hsin-Nan & Sheu, Uan-Yu & Zhang, Zhe George, 2019. "Optimal replacement policies for a system based on a one-cycle criterion," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    20. Ruiz-Castro, Juan Eloy & Dawabsha, Mohammed & Alonso, Francisco Javier, 2018. "Discrete-time Markovian arrival processes to model multi-state complex systems with loss of units and an indeterminate variable number of repairpersons," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 114-127.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:7:y:2016:i:1:d:10.1007_s13198-014-0300-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.