IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v109y2013icp32-40.html
   My bibliography  Save this article

Quantifying the impact of correlated failures on system reliability by a simulation approach

Author

Listed:
  • Lin, Yi-Kuei
  • Fiondella, Lance
  • Chang, Ping-Chen

Abstract

Correlation poses a serious threat to many engineered systems because the simultaneous failure of multiple components can dangerously degrade performance. Given the high cost of system failures in business and mission-critical applications, methods to explicitly consider the impact of correlation on system reliability are essential. This paper constructs a stochastic-flow network model to analyze the performance of a computer network, where there exists correlation between the failures of all the physical lines and routers comprising the edges and nodes of the network. That is, we address global-scale events that can cause widespread damage to the performance of the network. We propose a simulation approach to estimate the probability that a given amount of data can be sent from a source to sink through this network. This probability that the network satisfies a specified level of demand is referred to as the system reliability. Experimental results demonstrate that correlation can produce a substantial impact on system reliability. The proposed approach, thus, captures the influence of correlation on system reliability and offers a method to quantify the utility of reducing correlation.

Suggested Citation

  • Lin, Yi-Kuei & Fiondella, Lance & Chang, Ping-Chen, 2013. "Quantifying the impact of correlated failures on system reliability by a simulation approach," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 32-40.
  • Handle: RePEc:eee:reensy:v:109:y:2013:i:c:p:32-40
    DOI: 10.1016/j.ress.2012.08.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832012001603
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2012.08.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Yi-Kuei & Yeh, Cheng-Ta, 2011. "Maximal network reliability for a stochastic power transmission network," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1332-1339.
    2. Yeh, Wei-Chang, 2008. "A simple minimal path method for estimating the weighted multi-commodity multistate unreliable networks reliability," Reliability Engineering and System Safety, Elsevier, vol. 93(1), pages 125-136.
    3. Joseph C. Hudson & Kailash C. Kapur, 1985. "Reliability Bounds for Multistate Systems with Multistate Components," Operations Research, INFORMS, vol. 33(1), pages 153-160, February.
    4. Yi‐Kuei Lin & Ping‐Chen Chang, 2012. "Evaluation of system reliability for a cloud computing system with imperfect nodes," Systems Engineering, John Wiley & Sons, vol. 15(1), pages 83-94, March.
    5. Ramirez-Marquez, Jose Emmanuel & Coit, David W., 2007. "Multi-state component criticality analysis for reliability improvement in multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1608-1619.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ping-Chen Chang, 2019. "Reliability estimation for a stochastic production system with finite buffer storage by a simulation approach," Annals of Operations Research, Springer, vol. 277(1), pages 119-133, June.
    2. Ping-Chen Chang, 2022. "Reliability evaluation and big data analytics architecture for a stochastic flow network with time attribute," Annals of Operations Research, Springer, vol. 311(1), pages 3-18, April.
    3. Aboalkhair, Ahmad M. & Coolen, Frank P.A. & MacPhee, Iain M., 2014. "Nonparametric predictive inference for reliability of a k-out-of-m:G system with multiple component types," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 298-304.
    4. Yi-Kuei Lin & Lance Fiondella & Ping-Chen Chang, 2022. "Reliability of time-constrained multi-state network susceptible to correlated component faults," Annals of Operations Research, Springer, vol. 311(1), pages 239-254, April.
    5. Bai, Guanghan & Zuo, Ming J. & Tian, Zhigang, 2015. "Search for all d-MPs for all d levels in multistate two-terminal networks," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 300-309.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Yi-Kuei & Huang, Cheng-Fu & Chang, Ping-Chen, 2013. "System reliability evaluation of a touch panel manufacturing system with defect rate and reworking," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 51-60.
    2. Yi-Kuei Lin & Hsien-Chang Chou & Ping-Chen Chang, 2017. "Reliability and sensitivity analysis for a banking company transmission system," Journal of Risk and Reliability, , vol. 231(2), pages 146-154, April.
    3. Lin, Yi-Kuei, 2010. "Calculation of minimal capacity vectors through k minimal paths under budget and time constraints," European Journal of Operational Research, Elsevier, vol. 200(1), pages 160-169, January.
    4. Lin, Yi-Kuei & Yeh, Cheng-Ta, 2011. "Maximal network reliability for a stochastic power transmission network," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1332-1339.
    5. Lin, Yi-Kuei & Chang, Ping-Chen, 2012. "Evaluate the system reliability for a manufacturing network with reworking actions," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 127-137.
    6. Lin, Yi-Kuei, 2010. "Reliability evaluation of a revised stochastic flow network with uncertain minimum time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(6), pages 1253-1258.
    7. Lin, Yi-Kuei, 2010. "System reliability of a stochastic-flow network through two minimal paths under time threshold," International Journal of Production Economics, Elsevier, vol. 124(2), pages 382-387, April.
    8. Lin, Yi-Kuei & Huang, Ding-Hsiang, 2020. "Reliability analysis for a hybrid flow shop with due date consideration," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    9. Tina Song, Wheyming & Lin, Peisyuan, 2018. "System reliability of stochastic networks with multiple reworks," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 258-268.
    10. Yeh, Wei-Chang & Bae, Changseok & Huang, Chia-Ling, 2015. "A new cut-based algorithm for the multi-state flow network reliability problem," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 1-7.
    11. Thi-Phuong Nguyen, 2022. "Evaluation of network reliability for stochastic-flow air transportation network considering discounted fares from airlines," Annals of Operations Research, Springer, vol. 311(1), pages 335-355, April.
    12. Bai, Guanghan & Zuo, Ming J. & Tian, Zhigang, 2015. "Search for all d-MPs for all d levels in multistate two-terminal networks," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 300-309.
    13. Huseby, Arne B. & Natvig, Bent, 2013. "Discrete event simulation methods applied to advanced importance measures of repairable components in multistate network flow systems," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 186-198.
    14. M. A. Raayatpanah & P. M. Pardalos, 2018. "Reliability evaluation of a multicast over coded packet networks," Journal of Combinatorial Optimization, Springer, vol. 35(3), pages 921-940, April.
    15. Jane, Chin-Chia & Laih, Yih-Wenn, 2010. "A dynamic bounding algorithm for approximating multi-state two-terminal reliability," European Journal of Operational Research, Elsevier, vol. 205(3), pages 625-637, September.
    16. Lin, Shuai & Jia, Limin & Zhang, Hengrun & Zhang, Pengzhu, 2022. "Reliability of high-speed electric multiple units in terms of the expanded multi-state flow network," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    17. Si, Shubin & Levitin, Gregory & Dui, Hongyan & Sun, Shudong, 2014. "Importance analysis for reconfigurable systems," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 72-80.
    18. Xiao, Hui & Shi, Daimin & Ding, Yi & Peng, Rui, 2016. "Optimal loading and protection of multi-state systems considering performance sharing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 88-95.
    19. Yi-Kuei Lin & Lance Fiondella & Ping-Chen Chang, 2022. "Reliability of time-constrained multi-state network susceptible to correlated component faults," Annals of Operations Research, Springer, vol. 311(1), pages 239-254, April.
    20. Albareda-Sambola, Maria & Landete, Mercedes & Monge, Juan F. & Sainz-Pardo, José L., 2017. "Introducing capacities in the location of unreliable facilities," European Journal of Operational Research, Elsevier, vol. 259(1), pages 175-188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:109:y:2013:i:c:p:32-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.