IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i10p1587-d1397588.html
   My bibliography  Save this article

Reliability Assessment of Bridge Structure Using Bilal Distribution

Author

Listed:
  • Ahmed T. Ramadan

    (Department of Basic Sciences, Raya Higher Institute, New Damietta 34511, Damietta, Egypt)

  • Osama Abdulaziz Alamri

    (Department of Statistics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia)

  • Ahlam H. Tolba

    (Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt)

Abstract

Reliability assessments are pivotal in evaluating system quality and have found extensive application in manufacturing. This research delves into a system comprising five components, one of which is a bridge network. The components are presumed to follow a Bilal lifetime distribution with a failure rate that changes over time. Four distinct methods are employed to enhance the components within the system. This study involves the computation of δ -fractiles and reliability equivalence factors (REFs). Additionally, a numerical case study is provided to elucidate the theoretical findings.

Suggested Citation

  • Ahmed T. Ramadan & Osama Abdulaziz Alamri & Ahlam H. Tolba, 2024. "Reliability Assessment of Bridge Structure Using Bilal Distribution," Mathematics, MDPI, vol. 12(10), pages 1-18, May.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:10:p:1587-:d:1397588
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/10/1587/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/10/1587/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xia, Tangbin & Si, Guojin & Shi, Guo & Zhang, Kaigan & Xi, Lifeng, 2022. "Optimal selective maintenance scheduling for series–parallel systems based on energy efficiency optimization," Applied Energy, Elsevier, vol. 314(C).
    2. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    3. Sarhan, Ammar M., 2009. "Reliability equivalence factors of a general series–parallel system," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 229-236.
    4. Zafar Mahmood & Taghreed M Jawa & Neveen Sayed-Ahmed & E M Khalil & Abdisalam Hassan Muse & Ahlam H. Tolba & Dost Muhammad Khan, 2022. "An Extended Cosine Generalized Family of Distributions for Reliability Modeling: Characteristics and Applications with Simulation Study," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-20, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahlam H. Tolba & Osama Abdulaziz Alamri & Hanan Baaqeel, 2024. "Assessing the Bridge Structure’s System Reliability Utilizing the Generalized Unit Half Logistic Geometric Distribution," Mathematics, MDPI, vol. 12(19), pages 1-21, September.
    2. Li, Yuanfu & Chen, Yao & Hu, Zhenchao & Zhang, Huisheng, 2023. "Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Liu, Jiale & Wang, Huan, 2024. "A brain-inspired energy-efficient Wide Spiking Residual Attention Framework for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Yuan, Zixia & Xiong, Guojiang & Fu, Xiaofan & Mohamed, Ali Wagdy, 2023. "Improving fault tolerance in diagnosing power system failures with optimal hierarchical extreme learning machine," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    5. Chen, Edward & Bao, Han & Dinh, Nam, 2024. "Evaluating the reliability of machine-learning-based predictions used in nuclear power plant instrumentation and control systems," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    6. Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    7. Bakeer, Tammam, 2023. "General partial safety factor theory for the assessment of the reliability of nonlinear structural systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    8. Lewis, Austin D. & Groth, Katrina M., 2022. "Metrics for evaluating the performance of complex engineering system health monitoring models," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    9. Bo, Yimin & Bao, Minglei & Ding, Yi & Hu, Yishuang, 2024. "A DNN-based reliability evaluation method for multi-state series-parallel systems considering semi-Markov process," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    10. Chehade, Abdallah & Savargaonkar, Mayuresh & Krivtsov, Vasiliy, 2022. "Conditional Gaussian mixture model for warranty claims forecasting," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    11. Zheng, Shuwen & Wang, Chong & Zio, Enrico & Liu, Jie, 2024. "Fault detection in complex mechatronic systems by a hierarchical graph convolution attention network based on causal paths," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    12. Zaitseva, Elena & Levashenko, Vitaly & Rabcan, Jan, 2023. "A new method for analysis of Multi-State systems based on Multi-valued decision diagram under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    13. Fallahdizcheh, Amirhossein & Wang, Chao, 2022. "Transfer learning of degradation modeling and prognosis based on multivariate functional analysis with heterogeneous sampling rates," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    14. Xie, Haipeng & Tang, Lingfeng & Zhu, Hao & Cheng, Xiaofeng & Bie, Zhaohong, 2023. "Robustness assessment and enhancement of deep reinforcement learning-enabled load restoration for distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    15. Bai, Ruxue & Meng, Zong & Xu, Quansheng & Fan, Fengjie, 2023. "Fractional Fourier and time domain recurrence plot fusion combining convolutional neural network for bearing fault diagnosis under variable working conditions," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    16. Khakifirooz, Marzieh & Fathi, Michel & Lee, I-Chen & Tseng, Sheng-Tsaing, 2023. "Neural ordinary differential equation for sequential optimal design of fatigue test under accelerated life test analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    17. Su, Yunsheng & Shi, Luojie & Zhou, Kai & Bai, Guangxing & Wang, Zequn, 2024. "Knowledge-informed deep networks for robust fault diagnosis of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    18. Cao, Bohan & Yin, Qishuai & Guo, Yingying & Yang, Jin & Zhang, Laibin & Wang, Zhenquan & Tyagi, Mayank & Sun, Ting & Zhou, Xu, 2023. "Field data analysis and risk assessment of shallow gas hazards based on neural networks during industrial deep-water drilling," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    19. Li, Yao & He, Yihai & Liao, Ruoyu & Zheng, Xin & Dai, Wei, 2022. "Integrated predictive maintenance approach for multistate manufacturing system considering geometric and non-geometric defects of products," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    20. Zou, Xinyu & Tao, Laifa & Sun, Lulu & Wang, Chao & Ma, Jian & Lu, Chen, 2023. "A case-learning-based paradigm for quantitative recommendation of fault diagnosis algorithms: A case study of gearbox," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:10:p:1587-:d:1397588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.