IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v131y2014icp251-256.html
   My bibliography  Save this article

Optimal design of accelerated life tests for an extension of the exponential distribution

Author

Listed:
  • Haghighi, Firoozeh

Abstract

Accelerated life tests provide information quickly on the lifetime distribution of the products by testing them at higher than usual levels of stress. In this paper, the lifetime of a product at any level of stress is assumed to have an extension of the exponential distribution. This new family has been recently introduced by Nadarajah and Haghighi (2011 [1]); it can be used as an alternative to the gamma, Weibull and exponentiated exponential distributions. The scale parameter of lifetime distribution at constant stress levels is assumed to be a log-linear function of the stress levels and a cumulative exposure model holds. For this model, the maximum likelihood estimates (MLEs) of the parameters, as well as the Fisher information matrix, are derived. The asymptotic variance of the scale parameter at a design stress is adopted as an optimization objective and its expression formula is provided using the maximum likelihood method. A Monte Carlo simulation study is carried out to examine the performance of these methods. The asymptotic confidence intervals for the parameters and hypothesis test for the parameter of interest are constructed.

Suggested Citation

  • Haghighi, Firoozeh, 2014. "Optimal design of accelerated life tests for an extension of the exponential distribution," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 251-256.
  • Handle: RePEc:eee:reensy:v:131:y:2014:i:c:p:251-256
    DOI: 10.1016/j.ress.2014.04.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832014000854
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2014.04.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mikhail Nikulin & Firoozeh Haghighi, 2009. "On the power generalizedWeibull family: model for cancer censored data," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 75-86.
    2. Elsayed, E.A. & Zhang, Hao, 2007. "Design of PH-based accelerated life testing plans under multiple-stress-type," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 286-292.
    3. Nadarajah, Saralees & Kotz, Samuel, 2006. "The beta exponential distribution," Reliability Engineering and System Safety, Elsevier, vol. 91(6), pages 689-697.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Shuo-Jye & Huang, Syuan-Rong, 2017. "Planning two or more level constant-stress accelerated life tests with competing risks," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 1-8.
    2. Mugnaini, Marco & Addabbo, Tommaso & Fort, Ada & Elmi, Alessandro & Landi, Elia & Vignoli, Valerio, 2020. "Magnetic brakes material characterization under accelerated testing conditions," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Peña-Ramírez, Fernando A. & Guerra, Renata Rojas & Canterle, Diego Ramos & Cordeiro, Gauss M., 2020. "The logistic Nadarajah–Haghighi distribution and its associated regression model for reliability applications," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    4. Negreiros, Ana Cláudia Souza Vidal de & Lins, Isis Didier & Moura, Márcio José das Chagas & Droguett, Enrique López, 2020. "Reliability data analysis of systems in the wear-out phase using a (corrected) q-Exponential likelihood," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    5. Abd El-Raheem M. Abd El-Raheem & Mona Hosny & Mahmoud H. Abu-Moussa, 2021. "On Progressive Censored Competing Risks Data: Real Data Application and Simulation Study," Mathematics, MDPI, vol. 9(15), pages 1-17, July.
    6. Cai, Xia & Tian, Yubin & Ning, Wei, 2019. "Change-point analysis of the failure mechanisms based on accelerated life tests," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 515-522.
    7. Ibrahim Elbatal & Naif Alotaibi & Salem A. Alyami & Mohammed Elgarhy & Ahmed R. El-Saeed, 2022. "Bayesian and Non-Bayesian Estimation of the Nadaraj ah–Haghighi Distribution: Using Progressive Type-1 Censoring Scheme," Mathematics, MDPI, vol. 10(5), pages 1-16, February.
    8. Moustafa, Kassem & Hu, Zhen & Mourelatos, Zissimos P. & Baseski, Igor & Majcher, Monica, 2021. "System reliability analysis using component-level and system-level accelerated life testing," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    9. Nasir, Ehab A. & Pan, Rong, 2015. "Simulation-based Bayesian optimal ALT designs for model discrimination," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 1-9.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoud Aldeni & Carl Lee & Felix Famoye, 2017. "Families of distributions arising from the quantile of generalized lambda distribution," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-18, December.
    2. Alexander, Carol & Cordeiro, Gauss M. & Ortega, Edwin M.M. & Sarabia, José María, 2012. "Generalized beta-generated distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1880-1897.
    3. Gauss M. Cordeiro & Giovana O. Silva & Edwin M. M. Ortega, 2016. "An extended-G geometric family," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-16, December.
    4. Yaoting Yang & Weizhong Tian & Tingting Tong, 2021. "Generalized Mixtures of Exponential Distribution and Associated Inference," Mathematics, MDPI, vol. 9(12), pages 1-22, June.
    5. Nicollas S. S. da Costa & Maria do Carmo Soares de Lima & Gauss Moutinho Cordeiro, 2024. "A Bimodal Exponential Regression Model for Analyzing Dengue Fever Case Rates in the Federal District of Brazil," Mathematics, MDPI, vol. 12(21), pages 1-20, October.
    6. Elizabeth Hashimoto & Gauss Cordeiro & Edwin Ortega, 2013. "The new Neyman type A beta Weibull model with long-term survivors," Computational Statistics, Springer, vol. 28(3), pages 933-954, June.
    7. Hassan S. Bakouch & Abdus Saboor & Muhammad Nauman Khan, 2021. "Modified Beta Linear Exponential Distribution with Hydrologic Applications," Annals of Data Science, Springer, vol. 8(1), pages 131-157, March.
    8. Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
    9. Abdulhakim A. Al-Babtain & Mohammed K. Shakhatreh & Mazen Nassar & Ahmed Z. Afify, 2020. "A New Modified Kies Family: Properties, Estimation Under Complete and Type-II Censored Samples, and Engineering Applications," Mathematics, MDPI, vol. 8(8), pages 1-24, August.
    10. Emrah Altun & Mustafa Ç. Korkmaz & Mahmoud El-Morshedy & Mohamed S. Eliwa, 2021. "A New Flexible Family of Continuous Distributions: The Additive Odd-G Family," Mathematics, MDPI, vol. 9(16), pages 1-17, August.
    11. M. Elgarhy & Muhammad Ahsan Haq & Ismat Perveen, 2019. "Type II Half Logistic Exponential Distribution with Applications," Annals of Data Science, Springer, vol. 6(2), pages 245-257, June.
    12. Ibrahim Elbatal & Farrukh Jamal & Christophe Chesneau & Mohammed Elgarhy & Sharifah Alrajhi, 2018. "The Modified Beta Gompertz Distribution: Theory and Applications," Mathematics, MDPI, vol. 7(1), pages 1-17, December.
    13. Diouma Sira KA & George Otieno Orwa & Oscar Ngesa, 2019. "Exponentiated Nadarajah Haghighi Poisson Distribution," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 8(5), pages 34-48, September.
    14. Cordeiro, Gauss M. & Lemonte, Artur J., 2011. "The beta Laplace distribution," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 973-982, August.
    15. Patrick Osatohanmwen & Eferhonore Efe-Eyefia & Francis O. Oyegue & Joseph E. Osemwenkhae & Sunday M. Ogbonmwan & Benson A. Afere, 2022. "The Exponentiated Gumbel–Weibull {Logistic} Distribution with Application to Nigeria’s COVID-19 Infections Data," Annals of Data Science, Springer, vol. 9(5), pages 909-943, October.
    16. Traore, M. & Chammas, A. & Duviella, E., 2015. "Supervision and prognosis architecture based on dynamical classification method for the predictive maintenance of dynamical evolving systems," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 120-131.
    17. Cordeiro, Gauss M. & Lemonte, Artur J., 2011. "The [beta]-Birnbaum-Saunders distribution: An improved distribution for fatigue life modeling," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1445-1461, March.
    18. Silva, Rodrigo B. & Barreto-Souza, Wagner & Cordeiro, Gauss M., 2010. "A new distribution with decreasing, increasing and upside-down bathtub failure rate," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 935-944, April.
    19. Bagheri, S.F. & Bahrami Samani, E. & Ganjali, M., 2016. "The generalized modified Weibull power series distribution: Theory and applications," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 136-160.
    20. Mikka Kisuule & Ignacio Hernando-Gil & Jonathan Serugunda & Jane Namaganda-Kiyimba & Mike Brian Ndawula, 2021. "Stochastic Planning and Operational Constraint Assessment of System-Customer Power Supply Risks in Electricity Distribution Networks," Sustainability, MDPI, vol. 13(17), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:131:y:2014:i:c:p:251-256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.