IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v91y2006i6p717-727.html
   My bibliography  Save this article

Random balance designs for the estimation of first order global sensitivity indices

Author

Listed:
  • Tarantola, S.
  • Gatelli, D.
  • Mara, T.A.

Abstract

We present two methods for the estimation of main effects in global sensitivity analysis. The methods adopt Satterthwaite's application of random balance designs in regression problems, and extend it to sensitivity analysis of model output for non-linear, non-additive models. Finite as well as infinite ranges for model input factors are allowed. The methods are easier to implement than any other method available for global sensitivity analysis, and reduce significantly the computational cost of the analysis. We test their performance on different test cases, including an international benchmark on safety assessment for nuclear waste disposal originally carried out by OECD/NEA.

Suggested Citation

  • Tarantola, S. & Gatelli, D. & Mara, T.A., 2006. "Random balance designs for the estimation of first order global sensitivity indices," Reliability Engineering and System Safety, Elsevier, vol. 91(6), pages 717-727.
  • Handle: RePEc:eee:reensy:v:91:y:2006:i:6:p:717-727
    DOI: 10.1016/j.ress.2005.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832005001444
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2005.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saltelli A. & Tarantola S., 2002. "On the Relative Importance of Input Factors in Mathematical Models: Safety Assessment for Nuclear Waste Disposal," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 702-709, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Tate, 2012. "Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 325-347, September.
    2. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    3. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    4. Borgonovo, E., 2010. "Sensitivity analysis with finite changes: An application to modified EOQ models," European Journal of Operational Research, Elsevier, vol. 200(1), pages 127-138, January.
    5. Tobias Fissler & Silvana M. Pesenti, 2022. "Sensitivity Measures Based on Scoring Functions," Papers 2203.00460, arXiv.org, revised Jul 2022.
    6. Shang, Xiaobing & Su, Li & Fang, Hai & Zeng, Bowen & Zhang, Zhi, 2023. "An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    7. Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.
    8. Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
    9. Becker William & Paruolo Paolo & Saltelli Andrea, 2021. "Variable Selection in Regression Models Using Global Sensitivity Analysis," Journal of Time Series Econometrics, De Gruyter, vol. 13(2), pages 187-233, July.
    10. Bolado-Lavin, R. & Castaings, W. & Tarantola, S., 2009. "Contribution to the sample mean plot for graphical and numerical sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(6), pages 1041-1049.
    11. Wu, Qiong-Li & Cournède, Paul-Henry & Mathieu, Amélie, 2012. "An efficient computational method for global sensitivity analysis and its application to tree growth modelling," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 35-43.
    12. Emanuele Borgonovo, 2006. "Measuring Uncertainty Importance: Investigation and Comparison of Alternative Approaches," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1349-1361, October.
    13. Ge, Qiao & Menendez, Monica, 2017. "Extending Morris method for qualitative global sensitivity analysis of models with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 28-39.
    14. Katja Schilling & Daniel Bauer & Marcus C. Christiansen & Alexander Kling, 2020. "Decomposing Dynamic Risks into Risk Components," Management Science, INFORMS, vol. 66(12), pages 5738-5756, December.
    15. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    16. Cui, Lijie & Lu, Zhenzhou & Wang, Pan & Wang, Weihu, 2014. "The ordering importance measure of random variable and its estimation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 105(C), pages 132-143.
    17. Emanuele Borgonovo & William Castaings & Stefano Tarantola, 2011. "Moment Independent Importance Measures: New Results and Analytical Test Cases," Risk Analysis, John Wiley & Sons, vol. 31(3), pages 404-428, March.
    18. Mara, Thierry A. & Tarantola, Stefano, 2012. "Variance-based sensitivity indices for models with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 115-121.
    19. Wang, Guangmin & Kockelman, Kara M., 2016. "Local Sensitivity Analysis of Forecast Uncertainty in a Random-Utility-Based Multiregional Input-Output Model," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 55(2), August.
    20. Hanthanan Arachchilage, Kalpana & Hussaini, Mohammed Yousuff, 2021. "Ranking non-pharmaceutical interventions against Covid-19 global pandemic using global sensitivity analysis—Effect on number of deaths," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:91:y:2006:i:6:p:717-727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.