IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v252y2024ics0951832024005350.html
   My bibliography  Save this article

Interaction aware and multi-modal distribution for ship trajectory prediction with spatio-temporal crisscross hybrid network

Author

Listed:
  • Wang, Miaomiao
  • Wang, Yanfu
  • Ding, Jie
  • Yu, Weizhe

Abstract

Understanding the interactions between a ship and its surrounding ships enables effective trajectory prediction, which is critical to improving the safe navigation of autonomous ships. The prediction of future trajectories is a very challenging problem due to inherent uncertainties and complex spatiotemporal correlations between different ships. However, existing methods ignore the persistence and cross-domain nature of the influence between ships. To address the above challenges, an adaptive learning framework based on spatio-temporal crisscross hybrid network (STCNet) is proposed, which consists of two parts: spatio-temporal interaction aware and multi-modal trajectory prediction. Modeling temporal-dependent features, spatial interaction features and cross-domain features, and performs adaptive fusion to identify important features and capture all dynamic dependencies. Secondly, most methods only focus on the frequent modes of trajectories and cannot cover the actual paths of limited samples. Therefore, we design an augmented sampling method based on fusion knowledge and graph attention mechanism (KGS) to encourage exploration of trajectories in sparse areas of the sample space, and promote more accurate and reasonable future trajectory prediction. Experiments on the Ningbo-Zhoushan Port sea area dataset show that our method achieves better results than other methods.

Suggested Citation

  • Wang, Miaomiao & Wang, Yanfu & Ding, Jie & Yu, Weizhe, 2024. "Interaction aware and multi-modal distribution for ship trajectory prediction with spatio-temporal crisscross hybrid network," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024005350
    DOI: 10.1016/j.ress.2024.110463
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024005350
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110463?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baoyong Yan & Xiantao Zhang & Chengxu Tang & Xiao Wang & Yifei Yang & Weihua Xu, 2023. "A Random Forest-Based Method for Predicting Borehole Trajectories," Mathematics, MDPI, vol. 11(6), pages 1-15, March.
    2. Zhang, Jinfen & Liu, Jiongjiong & Hirdaris, Spyros & Zhang, Mingyang & Tian, Wuliu, 2023. "An interpretable knowledge-based decision support method for ship collision avoidance using AIS data," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Bye, Rolf J. & Aalberg, Asbjørn L., 2018. "Maritime navigation accidents and risk indicators: An exploratory statistical analysis using AIS data and accident reports," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 174-186.
    4. Gao, Dawei & Zhu, Yongsheng & Guedes Soares, C., 2023. "Uncertainty modelling and dynamic risk assessment for long-sequence AIS trajectory based on multivariate Gaussian Process," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Zhang, Jinfen & Wan, Chengpeng & He, Anxin & Zhang, Di & Soares, C. Guedes, 2021. "A two-stage black-spot identification model for inland waterway transportation," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    6. Xin, Xuri & Liu, Kezhong & Yang, Zaili & Zhang, Jinfen & Wu, Xiaolie, 2021. "A probabilistic risk approach for the collision detection of multi-ships under spatiotemporal movement uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Dawei & Zhu, Yongsheng & Guedes Soares, C., 2023. "Uncertainty modelling and dynamic risk assessment for long-sequence AIS trajectory based on multivariate Gaussian Process," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    2. Cai, Mingyou & Zhang, Jinfen & Zhang, Di & Yuan, Xiaoli & Soares, C. Guedes, 2021. "Collision risk analysis on ferry ships in Jiangsu Section of the Yangtze River based on AIS data," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Gil, Mateusz & Kozioł, Paweł & Wróbel, Krzysztof & Montewka, Jakub, 2022. "Know your safety indicator – A determination of merchant vessels Bow Crossing Range based on big data analytics," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    4. Xin, Xuri & Liu, Kezhong & Loughney, Sean & Wang, Jin & Li, Huanhuan & Ekere, Nduka & Yang, Zaili, 2023. "Multi-scale collision risk estimation for maritime traffic in complex port waters," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    5. Xin, Xuri & Liu, Kezhong & Loughney, Sean & Wang, Jin & Yang, Zaili, 2023. "Maritime traffic clustering to capture high-risk multi-ship encounters in complex waters," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    6. Zhang, Mingyang & Zhang, Di & Fu, Shanshan & Kujala, Pentti & Hirdaris, Spyros, 2022. "A predictive analytics method for maritime traffic flow complexity estimation in inland waterways," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    7. Liu, Jiongjiong & Zhang, Jinfen & Yang, Zaili & Wan, Chengpeng & Zhang, Mingyang, 2024. "A novel data-driven method of ship collision risk evolution evaluation during real encounter situations," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    8. Antão, P. & Sun, S. & Teixeira, A.P. & Guedes Soares, C., 2023. "Quantitative assessment of ship collision risk influencing factors from worldwide accident and fleet data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    9. Sui, Zhongyi & Wang, Shuaian, 2025. "Traffic advisory for ship encounter situation based on linear dynamic system," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    10. Zhang, Yang & Sun, Xukai & Chen, Jihong & Cheng, Cheng, 2021. "Spatial patterns and characteristics of global maritime accidents," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    11. Vytautas Paulauskas & Viktoras Senčila & Donatas Paulauskas & Martynas Simutis, 2023. "Impact of Port Shallowness (Clearance under the Ship’s Keel) on Shipping Safety, Energy Consumption and Sustainability of Green Ports," Sustainability, MDPI, vol. 15(22), pages 1-20, November.
    12. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    13. Adland, Roar & Jia, Haiying & Lode, Tønnes & Skontorp, Jørgen, 2021. "The value of meteorological data in marine risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    14. Rishuang Sun & Chi Zhang & Yujie Xiang & Lei Hou & Bo Wang, 2022. "Identification Method for Crash-Prone Sections of Mountain Highway under Complex Weather Conditions," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    15. Munim, Ziaul Haque & Sørli, Michael André & Kim, Hyungju & Alon, Ilan, 2024. "Predicting maritime accident risk using Automated Machine Learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    16. Puisa, Romanas & Montewka, Jakub & Krata, Przemyslaw, 2023. "A framework estimating the minimum sample size and margin of error for maritime quantitative risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    17. Lan, He & Ma, Xiaoxue & Qiao, Weiliang & Ma, Laihao, 2022. "On the causation of seafarers’ unsafe acts using grounded theory and association rule," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    18. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2022. "Maritime traffic probabilistic prediction based on ship motion pattern extraction," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    19. Zhang, Weibin & Feng, Xinyu & Goerlandt, Floris & Liu, Qing, 2020. "Towards a Convolutional Neural Network model for classifying regional ship collision risk levels for waterway risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    20. Nikolaos P Ventikos & Konstantinos Louzis, 2023. "Developing next generation marine risk analysis for ships: Bio-inspiration for building immunity," Journal of Risk and Reliability, , vol. 237(2), pages 405-424, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024005350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.