IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v252y2024ics0951832024005350.html
   My bibliography  Save this article

Interaction aware and multi-modal distribution for ship trajectory prediction with spatio-temporal crisscross hybrid network

Author

Listed:
  • Wang, Miaomiao
  • Wang, Yanfu
  • Ding, Jie
  • Yu, Weizhe

Abstract

Understanding the interactions between a ship and its surrounding ships enables effective trajectory prediction, which is critical to improving the safe navigation of autonomous ships. The prediction of future trajectories is a very challenging problem due to inherent uncertainties and complex spatiotemporal correlations between different ships. However, existing methods ignore the persistence and cross-domain nature of the influence between ships. To address the above challenges, an adaptive learning framework based on spatio-temporal crisscross hybrid network (STCNet) is proposed, which consists of two parts: spatio-temporal interaction aware and multi-modal trajectory prediction. Modeling temporal-dependent features, spatial interaction features and cross-domain features, and performs adaptive fusion to identify important features and capture all dynamic dependencies. Secondly, most methods only focus on the frequent modes of trajectories and cannot cover the actual paths of limited samples. Therefore, we design an augmented sampling method based on fusion knowledge and graph attention mechanism (KGS) to encourage exploration of trajectories in sparse areas of the sample space, and promote more accurate and reasonable future trajectory prediction. Experiments on the Ningbo-Zhoushan Port sea area dataset show that our method achieves better results than other methods.

Suggested Citation

  • Wang, Miaomiao & Wang, Yanfu & Ding, Jie & Yu, Weizhe, 2024. "Interaction aware and multi-modal distribution for ship trajectory prediction with spatio-temporal crisscross hybrid network," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024005350
    DOI: 10.1016/j.ress.2024.110463
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024005350
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110463?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024005350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.