IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i7p2819-d1365607.html
   My bibliography  Save this article

Dependence of Ships Turning at Port Turning Basins on Clearance under the Ship’s Keel

Author

Listed:
  • Vytautas Paulauskas

    (Marine Engineering Department, Klaipeda University, H. Manto Str. 84, LT-92294 Klaipeda, Lithuania)

  • Donatas Paulauskas

    (Marine Engineering Department, Klaipeda University, H. Manto Str. 84, LT-92294 Klaipeda, Lithuania)

Abstract

Turning ships in port turning basins is an important and responsible operation, mainly involving the ship itself and the port tugboats. Such operations involve many maneuvers that consume a lot of energy (fuel) and emit a lot of emissions. Turning basins in harbors and quay approaches are, in most cases, relatively shallow. This paper examines the turning of ships in port turning basins using harbor tugboats, the effect of shallow depth on ship turning, energy (fuel) consumption and the generation of emissions during such maneuvers of harbor tugboats. This paper presents the developed theoretical models, and the experimental results on theoretical models that were verified on real ships and using calibrated simulators. Discussions and conclusions were prepared on the basis of the research results. The use of the developed methodology makes it possible to increase shipping safety, optimize maneuvers and reduce energy (fuel) consumption when turning ships in the port and, at the same time, reduce the amount of fuel consumed by port tugboats and reduce the number of emissions of tugboats during such operations.

Suggested Citation

  • Vytautas Paulauskas & Donatas Paulauskas, 2024. "Dependence of Ships Turning at Port Turning Basins on Clearance under the Ship’s Keel," Sustainability, MDPI, vol. 16(7), pages 1-22, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2819-:d:1365607
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/7/2819/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/7/2819/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bing Wu & Xinping Yan & Yang Wang & C. Guedes Soares, 2017. "An Evidential Reasoning‐Based CREAM to Human Reliability Analysis in Maritime Accident Process," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1936-1957, October.
    2. Bye, Rolf J. & Aalberg, Asbjørn L., 2018. "Maritime navigation accidents and risk indicators: An exploratory statistical analysis using AIS data and accident reports," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 174-186.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vytautas Paulauskas & Viktoras Senčila & Donatas Paulauskas & Martynas Simutis, 2023. "Impact of Port Shallowness (Clearance under the Ship’s Keel) on Shipping Safety, Energy Consumption and Sustainability of Green Ports," Sustainability, MDPI, vol. 15(22), pages 1-20, November.
    2. Shaoqi Jiang & Weijiong Chen & Yutao Kang & Jiahao Liu & Wanglai Kuang, 2021. "Identifying Cognitive Mechanism Underlying Situation Awareness of Pilots’ Unsafe Behaviors Using Quantitative Modeling," IJERPH, MDPI, vol. 18(6), pages 1-17, March.
    3. Montewka, Jakub & Manderbacka, Teemu & Ruponen, Pekka & Tompuri, Markus & Gil, Mateusz & Hirdaris, Spyros, 2022. "Accident susceptibility index for a passenger ship-a framework and case study," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    4. Yu, Qing & Teixeira, Ângelo Palos & Liu, Kezhong & Rong, Hao & Guedes Soares, Carlos, 2021. "An integrated dynamic ship risk model based on Bayesian Networks and Evidential Reasoning," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    5. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    6. Sezer, Sukru Ilke & Akyuz, Emre & Arslan, Ozcan, 2022. "An extended HEART Dempster–Shafer evidence theory approach to assess human reliability for the gas freeing process on chemical tankers," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    7. Yuga Raju Gunda & Suprakash Gupta & Lalit Kumar Singh, 2023. "Assessing human performance and human reliability: a review," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(3), pages 817-828, June.
    8. Wang, Lei & Liu, Qing & Dong, Shiyu & Guedes Soares, C., 2022. "Selection of countermeasure portfolio for shipping safety with consideration of investment risk aversion," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    9. Zhang, Yang & Sun, Xukai & Chen, Jihong & Cheng, Cheng, 2021. "Spatial patterns and characteristics of global maritime accidents," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    10. Zhou, Yusheng & Li, Xue & Yuen, Kum Fai, 2022. "Holistic risk assessment of container shipping service based on Bayesian Network Modelling," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    11. Cai, Mingyou & Zhang, Jinfen & Zhang, Di & Yuan, Xiaoli & Soares, C. Guedes, 2021. "Collision risk analysis on ferry ships in Jiangsu Section of the Yangtze River based on AIS data," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    12. Wang, Likun & Yang, Zaili, 2018. "Bayesian network modelling and analysis of accident severity in waterborne transportation: A case study in China," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 277-289.
    13. Bing Wu & Huibin Tian & Xinping Yan & C. Guedes Soares, 2020. "A probabilistic consequence estimation model for collision accidents in the downstream of Yangtze River using Bayesian Networks," Journal of Risk and Reliability, , vol. 234(2), pages 422-436, April.
    14. Adland, Roar & Jia, Haiying & Lode, Tønnes & Skontorp, Jørgen, 2021. "The value of meteorological data in marine risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    15. Abrishami, Shokoufeh & Khakzad, Nima & Hosseini, Seyed Mahmoud, 2020. "A data-based comparison of BN-HRA models in assessing human error probability: An offshore evacuation case study," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    16. Munim, Ziaul Haque & Sørli, Michael André & Kim, Hyungju & Alon, Ilan, 2024. "Predicting maritime accident risk using Automated Machine Learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    17. Lan, He & Ma, Xiaoxue & Qiao, Weiliang & Ma, Laihao, 2022. "On the causation of seafarers’ unsafe acts using grounded theory and association rule," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    18. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2022. "Maritime traffic probabilistic prediction based on ship motion pattern extraction," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    19. Du, Lei & Goerlandt, Floris & Kujala, Pentti, 2020. "Review and analysis of methods for assessing maritime waterway risk based on non-accident critical events detected from AIS data," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    20. Ziyang Ye & Yanyi Chen & Tao Wang & Baiyuan Tang & Chengpeng Wan & Hao Zhang & Bozhong Zhou, 2024. "A Two-Stage Bayesian Network Approach to Inland Waterway Navigation Risk Assessment Considering the Characteristics of Different River Segments: A Case of the Yangtze River," Sustainability, MDPI, vol. 16(20), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2819-:d:1365607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.