IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i6p1297-d1090908.html
   My bibliography  Save this article

A Random Forest-Based Method for Predicting Borehole Trajectories

Author

Listed:
  • Baoyong Yan

    (State Key Laboratory of the Gas Disaster Detecting, Preventing and Emergency Controlling, Chongqing 400039, China
    CCTEG Chongqing Research Institute, Chongqing 400039, China)

  • Xiantao Zhang

    (State Key Laboratory of the Gas Disaster Detecting, Preventing and Emergency Controlling, Chongqing 400039, China
    CCTEG Chongqing Research Institute, Chongqing 400039, China)

  • Chengxu Tang

    (College of Artificial Intelligence, Southwest University, Chongqing 400715, China)

  • Xiao Wang

    (College of Artificial Intelligence, Southwest University, Chongqing 400715, China)

  • Yifei Yang

    (College of Artificial Intelligence, Southwest University, Chongqing 400715, China)

  • Weihua Xu

    (College of Artificial Intelligence, Southwest University, Chongqing 400715, China)

Abstract

Drilling trajectory control technology for near-horizontal directional drilling in coal mines is mainly determined empirically by manual skew data, and the empirical results are only qualitative and variable, meanwhile possessing great instability and uncertainty. In order to improve the accuracy and efficiency of drilling trajectory prediction, this paper investigates a random forest regression-based drilling trajectory prediction method after applying numerous machine learning methods to experimental data for comparison. In the selection of prediction features, this paper replaces all feature variables of the borehole trajectory with feature values with higher cumulative influence weights, and screens out three variables with high importance, azimuth, inclination and bend at the present moment of the drill, as the input variables of the model, and the increments in the borehole in a horizontal direction, left and right direction, and up and down direction at the present moment and the next moment as the output variables of the model. In the model training, the model in this paper uses the bootstrap self-service method resampling technique to collect training sample data, constructs a random forest regression model, and takes the mean value of the decision tree output as the result of the borehole trajectory prediction. To further improve the model accuracy, the paper improves the prediction performance of the model by adjusting the parameters of the random forest model such as tree, depth, minimum sample of leaf nodes, minimum sample number of internal node division, etc. The model is also evaluated by using common machine learning evaluation metrics R2 score, RAE, RMSE and MSE. The experimental results show that the average absolute error of the model drops to 1% on the prediction of the horizontal direction and up and down direction; the average absolute error of the model drops to 9% on the prediction of the left and right direction, and this error rate reaches the error requirement in the actual construction process, so the model can effectively improve the prediction accuracy of borehole trajectory while improving the safety of directional construction.

Suggested Citation

  • Baoyong Yan & Xiantao Zhang & Chengxu Tang & Xiao Wang & Yifei Yang & Weihua Xu, 2023. "A Random Forest-Based Method for Predicting Borehole Trajectories," Mathematics, MDPI, vol. 11(6), pages 1-15, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1297-:d:1090908
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/6/1297/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/6/1297/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Da & Sun, Kun, 2019. "Random forest solar power forecast based on classification optimization," Energy, Elsevier, vol. 187(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    2. Sibtain, Muhammad & Li, Xianshan & Saleem, Snoober & Ain, Qurat-ul- & Shi, Qiang & Li, Fei & Saeed, Muhammad & Majeed, Fatima & Shah, Syed Shoaib Ahmed & Saeed, Muhammad Hammad, 2022. "Multifaceted irradiance prediction by exploiting hybrid decomposition-entropy-Spatiotemporal attention based Sequence2Sequence models," Renewable Energy, Elsevier, vol. 196(C), pages 648-682.
    3. Wang, Xiaoyang & Sun, Yunlin & Luo, Duo & Peng, Jinqing, 2022. "Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification," Energy, Elsevier, vol. 240(C).
    4. Zhou, Yi & Zhou, Nanrun & Gong, Lihua & Jiang, Minlin, 2020. "Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine," Energy, Elsevier, vol. 204(C).
    5. Alipour, Mohammadali & Aghaei, Jamshid & Norouzi, Mohammadali & Niknam, Taher & Hashemi, Sattar & Lehtonen, Matti, 2020. "A novel electrical net-load forecasting model based on deep neural networks and wavelet transform integration," Energy, Elsevier, vol. 205(C).
    6. Cheng, Lilin & Zang, Haixiang & Wei, Zhinong & Zhang, Fengchun & Sun, Guoqiang, 2022. "Evaluation of opaque deep-learning solar power forecast models towards power-grid applications," Renewable Energy, Elsevier, vol. 198(C), pages 960-972.
    7. Andi A. H. Lateko & Hong-Tzer Yang & Chao-Ming Huang, 2022. "Short-Term PV Power Forecasting Using a Regression-Based Ensemble Method," Energies, MDPI, vol. 15(11), pages 1-21, June.
    8. Korkmaz, Deniz, 2021. "SolarNet: A hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting," Applied Energy, Elsevier, vol. 300(C).
    9. Wadim Strielkowski & Andrey Vlasov & Kirill Selivanov & Konstantin Muraviev & Vadim Shakhnov, 2023. "Prospects and Challenges of the Machine Learning and Data-Driven Methods for the Predictive Analysis of Power Systems: A Review," Energies, MDPI, vol. 16(10), pages 1-31, May.
    10. Junfeng Kang & Xinyi Zou & Jianlin Tan & Jun Li & Hamed Karimian, 2023. "Short-Term PM 2.5 Concentration Changes Prediction: A Comparison of Meteorological and Historical Data," Sustainability, MDPI, vol. 15(14), pages 1-24, July.
    11. Jebli, Imane & Belouadha, Fatima-Zahra & Kabbaj, Mohammed Issam & Tilioua, Amine, 2021. "Prediction of solar energy guided by pearson correlation using machine learning," Energy, Elsevier, vol. 224(C).
    12. Thi Ngoc Nguyen & Felix Musgens, 2021. "What drives the accuracy of PV output forecasts?," Papers 2111.02092, arXiv.org.
    13. Carneiro, Tatiane C. & Rocha, Paulo A.C. & Carvalho, Paulo C.M. & Fernández-Ramírez, Luis M., 2022. "Ridge regression ensemble of machine learning models applied to solar and wind forecasting in Brazil and Spain," Applied Energy, Elsevier, vol. 314(C).
    14. Nguyen, Thi Ngoc & Müsgens, Felix, 2022. "What drives the accuracy of PV output forecasts?," Applied Energy, Elsevier, vol. 323(C).
    15. Scott, Connor & Ahsan, Mominul & Albarbar, Alhussein, 2023. "Machine learning for forecasting a photovoltaic (PV) generation system," Energy, Elsevier, vol. 278(C).
    16. Li, Chengdong & Zhou, Changgeng & Peng, Wei & Lv, Yisheng & Luo, Xin, 2020. "Accurate prediction of short-term photovoltaic power generation via a novel double-input-rule-modules stacked deep fuzzy method," Energy, Elsevier, vol. 212(C).
    17. Zhao, Wei & Zhang, Haoran & Zheng, Jianqin & Dai, Yuanhao & Huang, Liqiao & Shang, Wenlong & Liang, Yongtu, 2021. "A point prediction method based automatic machine learning for day-ahead power output of multi-region photovoltaic plants," Energy, Elsevier, vol. 223(C).
    18. Kim, Jimin & Obregon, Josue & Park, Hoonseok & Jung, Jae-Yoon, 2024. "Multi-step photovoltaic power forecasting using transformer and recurrent neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    19. Abdallah Abdellatif & Hamza Mubarak & Shameem Ahmad & Tofael Ahmed & G. M. Shafiullah & Ahmad Hammoudeh & Hamdan Abdellatef & M. M. Rahman & Hassan Muwafaq Gheni, 2022. "Forecasting Photovoltaic Power Generation with a Stacking Ensemble Model," Sustainability, MDPI, vol. 14(17), pages 1-21, September.
    20. Li, Qing & Zhang, Xinyan & Ma, Tianjiao & Jiao, Chunlei & Wang, Heng & Hu, Wei, 2021. "A multi-step ahead photovoltaic power prediction model based on similar day, enhanced colliding bodies optimization, variational mode decomposition, and deep extreme learning machine," Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1297-:d:1090908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.