IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v251y2024ics0951832024004769.html
   My bibliography  Save this article

An interpretable multiscale lifting wavelet contrast network for planetary gearbox fault diagnosis with small samples

Author

Listed:
  • Dong, Yutong
  • Jiang, Hongkai
  • Wang, Xin
  • Mu, Mingzhe
  • Jiang, Wenxin

Abstract

Previous deep learning-based fault diagnosis methods for planetary gearbox require numerous training samples and lack the necessary interpretability. Aiming at the problems of insufficient interpretability of deep models and the absence of feature mining capability with small samples, this study presents an interpretable multiscale lifting wavelet contrast network for planetary gearbox fault diagnosis. First, an interpretable multiscale lifting wavelet network is designed to achieve comprehensive and credible features mining from fault signals. Secondly, an interactive channel attention mechanism is constructed to choose feature maps with different frequency components. It can further confirm the interpretability of the lifting wavelet layer while improving the accuracy of the model. Finally, a time-frequency contrast loss is designed to simultaneously optimizing the distribution of time-frequency domain features. The effectiveness and interpretability of the model are analyzed through various visualization approaches. Experimental results on two planetary gearbox datasets indicate that our method is an interpretable and effective fault recognition method with small samples, and it holds a promising future for engineering applications.

Suggested Citation

  • Dong, Yutong & Jiang, Hongkai & Wang, Xin & Mu, Mingzhe & Jiang, Wenxin, 2024. "An interpretable multiscale lifting wavelet contrast network for planetary gearbox fault diagnosis with small samples," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004769
    DOI: 10.1016/j.ress.2024.110404
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024004769
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110404?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Yutong & Jiang, Hongkai & Yao, Renhe & Mu, Mingzhe & Yang, Qiao, 2024. "Rolling bearing intelligent fault diagnosis towards variable speed and imbalanced samples using multiscale dynamic supervised contrast learning," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Han, Te & Li, Yan-Fu, 2022. "Out-of-distribution detection-assisted trustworthy machinery fault diagnosis approach with uncertainty-aware deep ensembles," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Dong, Yutong & Jiang, Hongkai & Wu, Zhenghong & Yang, Qiao & Liu, Yunpeng, 2023. "Digital twin-assisted multiscale residual-self-attention feature fusion network for hypersonic flight vehicle fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    4. Xu, Yadong & Yan, Xiaoan & Feng, Ke & Zhang, Yongchao & Zhao, Xiaoli & Sun, Beibei & Liu, Zheng, 2023. "Global contextual multiscale fusion networks for machine health state identification under noisy and imbalanced conditions," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Zhangjun & Xu, Renli & Luo, Yuansheng & Shao, Haidong, 2024. "A holistic semi-supervised method for imbalanced fault diagnosis of rotational machinery with out-of-distribution samples," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    2. Fu, Song & Zou, Limin & Wang, Yue & Lin, Lin & Lu, Yifan & Zhao, Minghang & Guo, Feng & Zhong, Shisheng, 2024. "DCSIAN: A novel deep cross-scale interactive attention network for fault diagnosis of aviation hydraulic pumps and generalizable applications," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    3. Yu, Tian & Li, Chaoshun & Huang, Jie & Xiao, Xiangqu & Zhang, Xiaoyuan & Li, Yuhong & Fu, Bitao, 2024. "ReF-DDPM: A novel DDPM-based data augmentation method for imbalanced rolling bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    4. Zhu, Zuanyu & Cheng, Junsheng & Wang, Ping & Wang, Jian & Kang, Xin & Yang, Yu, 2023. "A novel fault diagnosis framework for rotating machinery with hierarchical multiscale symbolic diversity entropy and robust twin hyperdisk-based tensor machine," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    5. Yang, Miaorui & Zhang, Kun & Sheng, Zhipeng & Zhang, Xiangfeng & Xu, Yonggang, 2024. "The amplitude modulation bispectrum: A weak modulation features extracting method for bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    6. Zhang, Qing & Tang, Lv & Xuan, Jianping & Shi, Tielin & Li, Rui, 2023. "An uncertainty relevance metric-based domain adaptation fault diagnosis method to overcome class relevance caused confusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    7. Zio, Enrico & Miqueles, Leonardo, 2024. "Digital twins in safety analysis, risk assessment and emergency management," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    8. Zhang, Wei & Wang, Ziwei & Li, Xiang, 2023. "Blockchain-based decentralized federated transfer learning methodology for collaborative machinery fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    9. Liu, Yuanhong & Shi, Baoxin & Lu, Shixiang & Gao, Zhi-Wei & Zhang, Fangfang, 2024. "A novel local linear embedding algorithm via local mutual representation for bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    10. Wang, Jinrui & Zhang, Zongzhen & Liu, Zhiliang & Han, Baokun & Bao, Huaiqian & Ji, Shanshan, 2023. "Digital twin aided adversarial transfer learning method for domain adaptation fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    11. Feng, Tingting & Li, Shichao & Guo, Liang & Gao, Hongli & Chen, Tao & Yu, Yaoxiang, 2023. "A degradation-shock dependent competing failure processes based method for remaining useful life prediction of drill bit considering time-shifting sudden failure threshold," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    12. Xia, Pengcheng & Huang, Yixiang & Tao, Zhiyu & Liu, Chengliang & Liu, Jie, 2023. "A digital twin-enhanced semi-supervised framework for motor fault diagnosis based on phase-contrastive current dot pattern," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    13. Li, Sheng & Ji, J.C. & Xu, Yadong & Sun, Xiuquan & Feng, Ke & Sun, Beibei & Wang, Yulin & Gu, Fengshou & Zhang, Ke & Ni, Qing, 2023. "IFD-MDCN: Multibranch denoising convolutional networks with improved flow direction strategy for intelligent fault diagnosis of rolling bearings under noisy conditions," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    14. Xu, Yuhui & Xia, Tangbin & Jiang, Yimin & Wang, Yu & Wang, Dong & Pan, Ershun & Xi, Lifeng, 2024. "A temporal partial domain adaptation network for transferable prognostics across working conditions with insufficient data," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    15. Li, Yan-Fu & Wang, Huan & Sun, Muxia, 2024. "ChatGPT-like large-scale foundation models for prognostics and health management: A survey and roadmaps," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    16. Huang, Keke & Tao, Shijun & Wu, Dehao & Yang, Chunhua & Gui, Weihua, 2024. "Robust condition identification against label noise in industrial processes based on trusted connection dictionary learning," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    17. Zhao, Zeyun & Wang, Jia & Tao, Qian & Li, Andong & Chen, Yiyang, 2024. "An unknown wafer surface defect detection approach based on Incremental Learning for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    18. Dong, Manman & Cheng, Yongbo & Wan, Liangqi, 2024. "A new adaptive multi-kernel relevance vector regression for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    19. Tian, Jilun & Zhang, Jiusi & Jiang, Yuchen & Wu, Shimeng & Luo, Hao & Yin, Shen, 2024. "A novel generalized source-free domain adaptation approach for cross-domain industrial fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    20. Zhou, Chengyu & Fang, Xiaolei, 2023. "A convex two-dimensional variable selection method for the root-cause diagnostics of product defects," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.