IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v251y2024ics0951832024004769.html
   My bibliography  Save this article

An interpretable multiscale lifting wavelet contrast network for planetary gearbox fault diagnosis with small samples

Author

Listed:
  • Dong, Yutong
  • Jiang, Hongkai
  • Wang, Xin
  • Mu, Mingzhe
  • Jiang, Wenxin

Abstract

Previous deep learning-based fault diagnosis methods for planetary gearbox require numerous training samples and lack the necessary interpretability. Aiming at the problems of insufficient interpretability of deep models and the absence of feature mining capability with small samples, this study presents an interpretable multiscale lifting wavelet contrast network for planetary gearbox fault diagnosis. First, an interpretable multiscale lifting wavelet network is designed to achieve comprehensive and credible features mining from fault signals. Secondly, an interactive channel attention mechanism is constructed to choose feature maps with different frequency components. It can further confirm the interpretability of the lifting wavelet layer while improving the accuracy of the model. Finally, a time-frequency contrast loss is designed to simultaneously optimizing the distribution of time-frequency domain features. The effectiveness and interpretability of the model are analyzed through various visualization approaches. Experimental results on two planetary gearbox datasets indicate that our method is an interpretable and effective fault recognition method with small samples, and it holds a promising future for engineering applications.

Suggested Citation

  • Dong, Yutong & Jiang, Hongkai & Wang, Xin & Mu, Mingzhe & Jiang, Wenxin, 2024. "An interpretable multiscale lifting wavelet contrast network for planetary gearbox fault diagnosis with small samples," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004769
    DOI: 10.1016/j.ress.2024.110404
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024004769
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110404?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.