IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i10p5271-d555435.html
   My bibliography  Save this article

Determinants and Prediction of Injury Severities in Multi-Vehicle-Involved Crashes

Author

Listed:
  • Xiuguang Song

    (School of Qilu Transportation, Shandong University, Jinan 250061, China
    Suzhou Research Institute, Shandong University, Suzhou 215123, China)

  • Rendong Pi

    (School of Qilu Transportation, Shandong University, Jinan 250061, China
    Suzhou Research Institute, Shandong University, Suzhou 215123, China)

  • Yu Zhang

    (Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China)

  • Jianqing Wu

    (School of Qilu Transportation, Shandong University, Jinan 250061, China
    Suzhou Research Institute, Shandong University, Suzhou 215123, China)

  • Yuhuan Dong

    (Shandong High-Speed Group Co. Ltd., Jinan 250002, China)

  • Han Zhang

    (Shandong High-Speed Construction Management Group Co. Ltd., Jinan 250002, China)

  • Xinyuan Zhu

    (Shandong High-Speed Engineering Consulting Group Co. Ltd., Jinan 250061, China)

Abstract

Multi-vehicle (MV) crashes, which can lead to great damages to society, have always been a serious issue for traffic safety. A further understanding of crash severity can help transportation engineers identify the critical reasons and find effective countermeasures to improve transportation safety. However, studies involving methods of machine learning to predict the possibility of injury-severity of MV crashes are rarely seen. Besides that, previous studies have rarely taken temporal stability into consideration in MV crashes. To bridge these knowledge gaps, two kinds of models: random parameters logit model (RPL), with heterogeneities in the means and variances, and Random Forest (RF) were employed in this research to identify the critical contributing factors and to predict the possibility of MV injury-severity. Three-year (2016–2018) MV data from Washington, United States, extracted from the Highway Safety Information System (HSIS), were applied for crash injury-severity analysis. In addition, a series of likelihood ratio tests were conducted for temporal stability between different years. Four indicators were employed to measure the prediction performance of the selected models, and four categories of crash-related characteristics were specifically investigated based on the RPL model. The results showed that the machine learning-based models performed better than the statistical models did when taking the overall accuracy as an evaluation indicator. However, the statistical models had a better prediction performance than the machine learning models had considering crash costs. Temporal instabilities were present between 2016 and 2017 MV data. The effect of significant factors was elaborated based on the RPL model with heterogeneities in the means and variances.

Suggested Citation

  • Xiuguang Song & Rendong Pi & Yu Zhang & Jianqing Wu & Yuhuan Dong & Han Zhang & Xinyuan Zhu, 2021. "Determinants and Prediction of Injury Severities in Multi-Vehicle-Involved Crashes," IJERPH, MDPI, vol. 18(10), pages 1-16, May.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:10:p:5271-:d:555435
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/10/5271/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/10/5271/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fanyu Meng & Pengpeng Xu & Cancan Song & Kun Gao & Zichu Zhou & Lili Yang, 2020. "Influential Factors Associated with Consecutive Crash Severity: A Two-Level Logistic Modeling Approach," IJERPH, MDPI, vol. 17(15), pages 1-16, August.
    2. Zhou, Xiaoyi & Lu, Pan & Zheng, Zijian & Tolliver, Denver & Keramati, Amin, 2020. "Accident Prediction Accuracy Assessment for Highway-Rail Grade Crossings Using Random Forest Algorithm Compared with Decision Tree," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    3. Xiaojun Shao & Xiaoxiang Ma & Feng Chen & Mingtao Song & Xiaodong Pan & Kesi You, 2020. "A Random Parameters Ordered Probit Analysis of Injury Severity in Truck Involved Rear-End Collisions," IJERPH, MDPI, vol. 17(2), pages 1-18, January.
    4. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    5. Xiuguang Song & Jianqing Wu & Hongbo Zhang & Rendong Pi, 2020. "Analysis of Crash Severity for Hazard Material Transportation Using Highway Safety Information System Data," SAGE Open, , vol. 10(3), pages 21582440209, July.
    6. Hou, Qinzhong & Huo, Xiaoyan & Leng, Junqiang & Cheng, Yuxing, 2019. "Examination of driver injury severity in freeway single-vehicle crashes using a mixed logit model with heterogeneity-in-means," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    7. Jungyeol Hong & Reuben Tamakloe & Dongjoo Park, 2019. "A Comprehensive Analysis of Multi-Vehicle Crashes on Expressways: A Double Hurdle Approach," Sustainability, MDPI, vol. 11(10), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen Cheng & Fei Ye & Changshuai Wang & Jiping Bai, 2023. "Identifying the Factors Contributing to Freeway Crash Severity Based on Discrete Choice Models," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    2. Arshad Jamal & Waleed Umer, 2020. "Exploring the Injury Severity Risk Factors in Fatal Crashes with Neural Network," IJERPH, MDPI, vol. 17(20), pages 1-22, October.
    3. Czajkowski, Mikołaj & Zagórska, Katarzyna & Letki, Natalia & Tryjanowski, Piotr & Wąs, Adam, 2021. "Drivers of farmers’ willingness to adopt extensive farming practices in a globally important bird area," Land Use Policy, Elsevier, vol. 107(C).
    4. Ortega, David L. & Wang, H. Holly & Wu, Laping & Hong, Soo Jeong, 2015. "Retail channel and consumer demand for food quality in China," China Economic Review, Elsevier, vol. 36(C), pages 359-366.
    5. Pereira, Pedro & Ribeiro, Tiago, 2011. "The impact on broadband access to the Internet of the dual ownership of telephone and cable networks," International Journal of Industrial Organization, Elsevier, vol. 29(2), pages 283-293, March.
    6. Hou, Hui & Liu, Chao & Wei, Ruizeng & He, Huan & Wang, Lei & Li, Weibo, 2023. "Outage duration prediction under typhoon disaster with stacking ensemble learning," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. Péter Czine & Péter Balogh & Zsanett Blága & Zoltán Szabó & Réka Szekeres & Stephane Hess & Béla Juhász, 2024. "Is It Sufficient to Select the Optimal Class Number Based Only on Information Criteria in Fixed- and Random-Parameter Latent Class Discrete Choice Modeling Approaches?," Econometrics, MDPI, vol. 12(3), pages 1-16, August.
    8. Mogens Fosgerau & André de Palma, 2016. "Generalized entropy models," Working Papers hal-01291347, HAL.
    9. Choi, Andy S., 2013. "Nonmarket values of major resources in the Korean DMZ areas: A test of distance decay," Ecological Economics, Elsevier, vol. 88(C), pages 97-107.
    10. Doherty, Edel & Campbell, Danny, 2011. "Demand for improved food safety and quality: a cross-regional comparison," 85th Annual Conference, April 18-20, 2011, Warwick University, Coventry, UK 108791, Agricultural Economics Society.
    11. Vij, Akshay & Walker, Joan L., 2016. "How, when and why integrated choice and latent variable models are latently useful," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 192-217.
    12. Abdurrahman B. Aydemir & Erkan Duman, 2021. "Migrant Networks and Destination Choice: Evidence from Moves across Turkish Provinces," Koç University-TUSIAD Economic Research Forum Working Papers 2109, Koc University-TUSIAD Economic Research Forum.
    13. Lai, John & Olynk Widmar, Nicole J. & Gunderson, Michael A. & Widmar, David A. & Ortega, David L., 2018. "Prioritization of farm success factors by commercial farm managers," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 21(6), July.
    14. Redding, Stephen J. & Weinstein, David E., 2016. "A unified approach to estimating demand and welfare," LSE Research Online Documents on Economics 67681, London School of Economics and Political Science, LSE Library.
    15. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    16. Allais, Olivier & Etilé, Fabrice & Lecocq, Sébastien, 2015. "Mandatory labels, taxes and market forces: An empirical evaluation of fat policies," Journal of Health Economics, Elsevier, vol. 43(C), pages 27-44.
    17. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    18. Veneziani, Mario & Sckokai, Paolo & Moro, Daniele, 2012. "Consumers’ willingness to pay for a functional food," 2012 First Congress, June 4-5, 2012, Trento, Italy 124101, Italian Association of Agricultural and Applied Economics (AIEAA).
    19. Nathan H. Miller, 2008. "Competition When Consumers Value Firm Scope," EAG Discussions Papers 200807, Department of Justice, Antitrust Division.
    20. Bonnet, Céline & Requillart, Vincent, 2010. "Is The Eu Sugar Policy Reform Likely To Increase Obesity?," 115th Joint EAAE/AAEA Seminar, September 15-17, 2010, Freising-Weihenstephan, Germany 116414, European Association of Agricultural Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:10:p:5271-:d:555435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.