IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v250y2024ics0951832024003612.html
   My bibliography  Save this article

A random-effect Wiener process degradation model with transmuted normal distribution and ABC-Gibbs algorithm for parameter estimation

Author

Listed:
  • Muhammad, Isyaku
  • Xiahou, Tangfan
  • Liu, Yu
  • Muhammad, Mustapha

Abstract

Degradation modeling is a widely used technique for evaluating the reliability of high-quality products. However, unit-to-unit variability, stemming from material fluctuations during manufacturing and environmental factors, can significantly impact the accuracy of this assessment. To tackle this issue, we propose a novel time-transformed Wiener process with a transmuted normal distribution to represent unit-to-unit variability. This distribution extends the normal distribution, offering greater flexibility by capturing a wide range of non-normal, asymmetric behaviors in unit-to-unit variability. We derive closed-form expressions for the probability density function and reliability function for the model in two scenarios: (i) assuming the degradation process observations remain unaffected by measurement errors, and (ii) assuming the degradation process observations influenced by measurement errors. Due to the complexity of the likelihood functions, we employ the Gibbs version of approximate Bayesian computation (ABC-Gibbs) for parameter estimation. The effectiveness and application of the proposed method were demonstrated through numerical examples and practical application with light-emitting diode degradation data. Moreover, we use approximate Bayesian computation model choice (ABC-MC) for model comparison studies. The results indicated that our model offers improved approximations to observed degradation results compared to existing models, showcasing its superiority in generating data under the smallest tolerance threshold.

Suggested Citation

  • Muhammad, Isyaku & Xiahou, Tangfan & Liu, Yu & Muhammad, Mustapha, 2024. "A random-effect Wiener process degradation model with transmuted normal distribution and ABC-Gibbs algorithm for parameter estimation," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
  • Handle: RePEc:eee:reensy:v:250:y:2024:i:c:s0951832024003612
    DOI: 10.1016/j.ress.2024.110289
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024003612
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110289?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lanqing Hong & Zhi-Sheng Ye & Josephine Kartika Sari, 2018. "Interval estimation for Wiener processes based on accelerated degradation test data," IISE Transactions, Taylor & Francis Journals, vol. 50(12), pages 1043-1057, December.
    2. Hu, Changhua & Xing, Yuanxing & Du, Dangbo & Si, Xiaosheng & Zhang, Jianxun, 2023. "Remaining useful life estimation for two-phase nonlinear degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Shangguan, Anqi & Xie, Guo & Fei, Rong & Mu, Lingxia & Hei, Xinhong, 2023. "Train wheel degradation generation and prediction based on the time series generation adversarial network," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    4. Chiachío, Manuel & Saleh, Ali & Naybour, Susannah & Chiachío, Juan & Andrews, John, 2022. "Reduction of Petri net maintenance modeling complexity via Approximate Bayesian Computation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Zhang, Ao & Wang, Zhihua & Bao, Rui & Liu, Chengrui & Wu, Qiong & Cao, Shihao, 2023. "A novel failure time estimation method for degradation analysis based on general nonlinear Wiener processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    6. Zheng, Huiling & Yang, Jun & Zhao, Yu, 2023. "Reliability demonstration test plan for degraded products subject to Gamma process with unit heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    7. Fang, Guanqi & Pan, Rong & Wang, Yukun, 2022. "Inverse Gaussian processes with correlated random effects for multivariate degradation modeling," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1177-1193.
    8. Han Wang & Haitao Liao & Xiaobing Ma & Rui Bao & Yu Zhao, 2022. "A new class of mechanism-equivalence-based Wiener process models for reliability analysis," IISE Transactions, Taylor & Francis Journals, vol. 55(2), pages 129-146, November.
    9. Pang, Zhenan & Li, Tianmei & Pei, Hong & Si, Xiaosheng, 2023. "A condition-based prognostic approach for age- and state-dependent partially observable nonlinear degrading system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    10. Brandon Turner & Trisha Zandt, 2014. "Hierarchical Approximate Bayesian Computation," Psychometrika, Springer;The Psychometric Society, vol. 79(2), pages 185-209, April.
    11. Zhai, Qingqing & Chen, Piao & Hong, Lanqing & Shen, Lijuan, 2018. "A random-effects Wiener degradation model based on accelerated failure time," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 94-103.
    12. Wang, Zhijie & Zhai, Qingqing & Chen, Piao, 2021. "Degradation modeling considering unit-to-unit heterogeneity-A general model and comparative study," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    13. Ye, Xuerong & Hu, Yifan & Zheng, Bokai & Chen, Cen & Zhai, Guofu, 2022. "A new class of multi-stress acceleration models with interaction effects and its extension to accelerated degradation modelling," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    14. Piao Chen & Zhi-Sheng Ye & Qingqing Zhai, 2020. "Parametric analysis of time-censored aggregate lifetime data," IISE Transactions, Taylor & Francis Journals, vol. 52(5), pages 516-527, May.
    15. repec:dau:papers:123456789/5724 is not listed on IDEAS
    16. Li, Junxing & Wang, Zhihua & Zhang, Yongbo & Liu, Chengrui & Fu, Huimin, 2018. "A nonlinear Wiener process degradation model with autoregressive errors," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 48-57.
    17. Lorenzo Pacchiardi & Pierre Künzli & Marcel Schöngens & Bastien Chopard & Ritabrata Dutta, 2021. "Distance-learning For Approximate Bayesian Computation To Model a Volcanic Eruption," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 288-317, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Wen-Bin & Li, Xiao-Yang & Wu, Ji-Peng & Kang, Rui, 2024. "Uncertain random accelerated degradation modelling and statistical analysis with aleatory and epistemic uncertainties from multiple dimensions," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Zhang, Ao & Wang, Zhihua & Bao, Rui & Liu, Chengrui & Wu, Qiong & Cao, Shihao, 2023. "A novel failure time estimation method for degradation analysis based on general nonlinear Wiener processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Wang, Xiaofei & Wang, Bing Xing & Jiang, Pei Hua & Hong, Yili, 2020. "Accurate reliability inference based on Wiener process with random effects for degradation data," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    4. Hao, Songhua & Yang, Jun & Berenguer, Christophe, 2019. "Degradation analysis based on an extended inverse Gaussian process model with skew-normal random effects and measurement errors," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 261-270.
    5. Ye, Xuerong & Hu, Yifan & Zheng, Bokai & Chen, Cen & Zhai, Guofu, 2022. "A new class of multi-stress acceleration models with interaction effects and its extension to accelerated degradation modelling," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    6. Iannacone, Leandro & Gardoni, Paolo, 2024. "Modeling deterioration and predicting remaining useful life using stochastic differential equations," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    7. Wu, Bin & Zhang, Xiaohong & Shi, Hui & Zeng, Jianchao, 2024. "Failure mode division and remaining useful life prognostics of multi-indicator systems with multi-fault," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    8. Asgari, Ali & Si, Wujun & Yuan, Liang & Krishnan, Krishna & Wei, Wei, 2024. "Multivariable degradation modeling and life prediction using multivariate fractional Brownian motion," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    9. Li, Yang & Gao, Haifeng & Chen, Hongtian & Liu, Chun & Yang, Zhe & Zio, Enrico, 2024. "Accelerated degradation testing for lifetime analysis considering random effects and the influence of stress and measurement errors," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    10. Lin, Chen & Xiao, Hui & Kou, Gang & Peng, Rui, 2020. "Defending a series system with individual protection, overarching protection, and disinformation," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    11. Liao, Jing & Peng, Tao & Xu, Yansong & Gui, Gui & Yang, Chao & Yang, Chunhua & Gui, Weihua, 2024. "Task-orientated probabilistic damage model with interdependent degradation behaviors for RUL prediction of traction converter systems," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    12. Liu, Di & Wang, Shaoping, 2021. "An artificial neural network supported stochastic process for degradation modeling and prediction," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    13. Chatenet, Q. & Remy, E. & Gagnon, M. & Fouladirad, M. & Tahan, A.S., 2021. "Modeling cavitation erosion using non-homogeneous gamma process," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    14. Liu, Di & Wang, Shaoping & Cui, Xiaoyu, 2022. "An artificial neural network supported Wiener process based reliability estimation method considering individual difference and measurement error," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    15. Wang, Bo & Jiang, Ping & Guo, Bo, 2024. "A Bayesian design method for monopropellant engine system reliability qualification test plan," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    16. Zhou, Shirong & Tang, Yincai & Xu, Ancha, 2021. "A generalized Wiener process with dependent degradation rate and volatility and time-varying mean-to-variance ratio," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    17. Shen, Jingyuan & Hu, Jiawen & Ma, Yizhong, 2020. "Two preventive replacement strategies for systems with protective auxiliary parts subject to degradation and economic dependence," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    18. Wang, Zhijie & Zhai, Qingqing & Chen, Piao, 2021. "Degradation modeling considering unit-to-unit heterogeneity-A general model and comparative study," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    19. Chen, Wen-Bin & Li, Xiao-Yang & Kang, Rui, 2022. "Integration for degradation analysis with multi-source ADT datasets considering dataset discrepancies and epistemic uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    20. Yingzhi Zhang & Guiming Guo & Fang Yang & Yubin Zheng & Fenli Zhai, 2023. "Prediction of Tool Remaining Useful Life Based on NHPP-WPHM," Mathematics, MDPI, vol. 11(8), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:250:y:2024:i:c:s0951832024003612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.