IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v246y2024ics0951832024001492.html
   My bibliography  Save this article

Modeling and solving Passenger ship evacuation arrangement problem

Author

Listed:
  • Li, Yapeng
  • Xiao, Qin
  • Gu, Jiayang
  • Cai, Wei
  • Hu, Min

Abstract

In emergency scenarios on large passenger ships, ensuring the safety and efficient evacuation of a significant number of passengers is of utmost importance. Well-designed and preplanned evacuation arrangements are essential for a smooth and timely evacuation process. However, current research and evacuation models often overlook crucial planning considerations, including the allocation framework, counterflow prevention, and plan feasibility. To bridge these gaps, this paper presents a novel multi-criteria optimization model that addresses these overlooked aspects. A unique heuristic solution is proposed, utilizing a two-stage simulated annealing algorithm, to effectively solve this complex evacuation problem. When applied to a full-scale 14-deck cruise ship with 4977 passengers, the presented approach results in an optimized evacuation plan that markedly outperforms the original plan from the design materials, achieving reduced evacuation time and counterflow elimination. This research offers a practical tool for emergency management on large passenger ships, empowering ship designers and safety engineers to make informed, data-driven decisions.

Suggested Citation

  • Li, Yapeng & Xiao, Qin & Gu, Jiayang & Cai, Wei & Hu, Min, 2024. "Modeling and solving Passenger ship evacuation arrangement problem," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:reensy:v:246:y:2024:i:c:s0951832024001492
    DOI: 10.1016/j.ress.2024.110075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024001492
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdelghany, Ahmed & Abdelghany, Khaled & Mahmassani, Hani & Alhalabi, Wael, 2014. "Modeling framework for optimal evacuation of large-scale crowded pedestrian facilities," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1105-1118.
    2. Wang, Xinjian & Liu, Zhengjiang & Loughney, Sean & Yang, Zaili & Wang, Yanfu & Wang, Jin, 2022. "Numerical analysis and staircase layout optimisation for a Ro-Ro passenger ship during emergency evacuation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Li, Shengyan & Ma, Hongyan & Zhang, Yingda & Wang, Shuai & Guo, Rong & He, Wei & Xu, Jiechuan & Xie, Zongyuan, 2023. "Emergency evacuation risk assessment method for educational buildings based on improved extreme learning machine," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    4. Wang, Xinjian & Xia, Guoqing & Zhao, Jian & Wang, Jin & Yang, Zaili & Loughney, Sean & Fang, Siming & Zhang, Shukai & Xing, Yongheng & Liu, Zhengjiang, 2023. "A novel method for the risk assessment of human evacuation from cruise ships in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Darvishan, Ayda & Lim, Gino J., 2021. "Dynamic network flow optimization for real-time evacuation reroute planning under multiple road disruptions," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    6. He, Zhichao & Shen, Kaixin & Lan, Meng & Weng, Wenguo, 2024. "An evacuation path planning method for multi-hazard accidents in chemical industries based on risk perception," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    7. Chi To Ng & T. C. E. Cheng & Eugene Levner & Boris Kriheli, 2021. "Optimal bi-criterion planning of rescue and evacuation operations for marine accidents using an iterative scheduling algorithm," Annals of Operations Research, Springer, vol. 296(1), pages 407-420, January.
    8. Spyrou, Kostas J. & Koromila, Ioanna A., 2020. "A risk model of passenger ship fire safety and its application," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    9. Dorota Łozowicka, 2021. "The design of the arrangement of evacuation routes on a passenger ship using the method of genetic algorithms," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-20, August.
    10. Goerigk, Marc & Deghdak, Kaouthar & Heßler, Philipp, 2014. "A comprehensive evacuation planning model and genetic solution algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 82-97.
    11. Francisco Pérez‐Villalonga & Javier Salmerón & Kevin Wood, 2008. "Dynamic evacuation routes for personnel on a naval ship," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(8), pages 785-799, December.
    12. Khakzad, Nima, 2023. "A methodology based on Dijkstra's algorithm and mathematical programming for optimal evacuation in process plants in the event of major tank fires," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    13. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    14. Ding, Zhikun & Xu, Shengqu & Xie, Xiaofeng & Zheng, Kairui & Wang, Daochu & Fan, Jianhao & Li, Hong & Liao, Longhui, 2024. "A building information modeling-based fire emergency evacuation simulation system for large infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    15. Saadatseresht, Mohammad & Mansourian, Ali & Taleai, Mohammad, 2009. "Evacuation planning using multiobjective evolutionary optimization approach," European Journal of Operational Research, Elsevier, vol. 198(1), pages 305-314, October.
    16. Dirk Helbing & Lubos Buzna & Anders Johansson & Torsten Werner, 2005. "Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions," Transportation Science, INFORMS, vol. 39(1), pages 1-24, February.
    17. Krutein, Klaas Fiete & Goodchild, Anne, 2022. "The isolated community evacuation problem with mixed integer programming," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    2. Khamis, Nurulaqilla & Selamat, Hazlina & Ismail, Fatimah Sham & Lutfy, Omar Farouq & Haniff, Mohamad Fadzli & Nordin, Ili Najaa Aimi Mohd, 2020. "Optimized exit door locations for a safer emergency evacuation using crowd evacuation model and artificial bee colony optimization," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    3. He, Zhichao & Shen, Kaixin & Lan, Meng & Weng, Wenguo, 2024. "An evacuation path planning method for multi-hazard accidents in chemical industries based on risk perception," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    4. Wang, Xinjian & Xia, Guoqing & Zhao, Jian & Wang, Jin & Yang, Zaili & Loughney, Sean & Fang, Siming & Zhang, Shukai & Xing, Yongheng & Liu, Zhengjiang, 2023. "A novel method for the risk assessment of human evacuation from cruise ships in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Qingyan Ning & Maosheng Li, 2022. "Modeling Pedestrian Detour Behavior By-Passing Conflict Areas," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    6. Ding, Zhikun & Xu, Shengqu & Xie, Xiaofeng & Zheng, Kairui & Wang, Daochu & Fan, Jianhao & Li, Hong & Liao, Longhui, 2024. "A building information modeling-based fire emergency evacuation simulation system for large infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    7. Fatemeh Sabouhi & Ali Bozorgi-Amiri & Mohammad Moshref-Javadi & Mehdi Heydari, 2019. "An integrated routing and scheduling model for evacuation and commodity distribution in large-scale disaster relief operations: a case study," Annals of Operations Research, Springer, vol. 283(1), pages 643-677, December.
    8. Mao, Qinghua & Huo, Wenteng & Li, Zunshu & Liu, Xueying & Li, Yang & Wang, Heng, 2024. "Evacuation strategies for wrecked pedestrians considering emotional contagion and safety officers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    9. Huan Cao & Tian Li & Shuxia Li & Tijun Fan, 2017. "An integrated emergency response model for toxic gas release accidents based on cellular automata," Annals of Operations Research, Springer, vol. 255(1), pages 617-638, August.
    10. Song, Chengcheng & Shao, Quan & Zhu, Pei & Dong, Min & Yu, Wenfei, 2023. "An emergency aircraft evacuation simulation considering passenger overtaking and luggage retrieval," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    11. Feng, Xinhang & Jiang, Yanli & Gai, Wenmei, 2024. "Rural community response to accidental toxic gas release: An individual emergency response model during self-organized evacuations," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    12. Kimms, A. & Maiwald, M., 2018. "Bi-objective safe and resilient urban evacuation planning," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1122-1136.
    13. He, Zhichao & Shen, Kaixin & Lan, Meng & Weng, Wenguo, 2024. "The effects of dynamic multi-hazard risk assessment on evacuation strategies in chemical accidents," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    14. Liu, Enze & Barker, Kash & Chen, Hong, 2022. "A multi-modal evacuation-based response strategy for mitigating disruption in an intercity railway system," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    15. Shang, Qingxue & Guo, Xiaodong & Li, Jichao & Wang, Tao, 2022. "Post-earthquake health care service accessibility assessment framework and its application in a medium-sized city," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    16. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    17. Shiwakoti, Nirajan & Sarvi, Majid, 2013. "Understanding pedestrian crowd panic: a review on model organisms approach," Journal of Transport Geography, Elsevier, vol. 26(C), pages 12-17.
    18. Sandeep Kumar Sood & Keshav Singh Rawat, 2021. "A scientometric analysis of ICT-assisted disaster management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2863-2881, April.
    19. Diaz, Rafael & Behr, Joshua G. & Acero, Beatriz, 2022. "Coastal housing recovery in a postdisaster environment: A supply chain perspective," International Journal of Production Economics, Elsevier, vol. 247(C).
    20. Kurdi, Heba & Almulifi, Asma & Al-Megren, Shiroq & Youcef-Toumi, Kamal, 2021. "A balanced evacuation algorithm for facilities with multiple exits," European Journal of Operational Research, Elsevier, vol. 289(1), pages 285-296.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:246:y:2024:i:c:s0951832024001492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.