IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v242y2024ics0951832023006610.html
   My bibliography  Save this article

Improving node connectivity by optimized dual tree-based effective node consolidation

Author

Listed:
  • Wei, Wei
  • Hu, Qiuyuan
  • Zhang, Qinghui

Abstract

As an effective way to defend against network failure, nodes or links in a network can be protected to ensure connectivity. The consolidation of critical nodes is a necessary strategy, especially when nodes are important infrastructure elements, such as in wireless environments. However, since the problem is NP-hard, even the optimal algorithm is of high computational complexity on small-scale graphs, which makes it difficult to handle large-scale networks in feasible time. Fortunately, we have found an effective pairwise node cut set (NCS)-tree search method to locate small NCSes. The critical nodes in these NCSes are then selected to construct the optimal dual tree, and to determine the near optimal set of consolidation nodes. Comparison results show that the serial version of the proposed algorithm achieves a remarkable acceleration ratio of more than 105 compared to the optimal algorithm, with only a minimal additional cost. In addition, the consolidation solution provides protection for over 99.9% of vulnerable node pairs in large-scale networks and can significantly outperform common heuristics. Moreover, the ready-to-parallelization algorithm has the potential to be further accelerated hundreds of times in full parallelization.

Suggested Citation

  • Wei, Wei & Hu, Qiuyuan & Zhang, Qinghui, 2024. "Improving node connectivity by optimized dual tree-based effective node consolidation," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006610
    DOI: 10.1016/j.ress.2023.109747
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023006610
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109747?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei, Wei & Liu, Yuting & Yang, Weidong, 2023. "PTUM: Efficient shielding of large-scale network through pruned tree-cut mapping," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    2. He, Zhidong & Navneet, Kumar & van Dam, Wirdmer & Van Mieghem, Piet, 2021. "Robustness assessment of multimodal freight transport networks," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    3. Tu, Haicheng & Gu, Fengqiang & Zhang, Xi & Xia, Yongxiang, 2023. "Robustness analysis of power system under sequential attacks with incomplete information," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    4. Yeh, Wei-Chang & Bae, Changseok & Huang, Chia-Ling, 2015. "A new cut-based algorithm for the multi-state flow network reliability problem," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 1-7.
    5. Rentong Chen & Chao Zhang & Shaoping Wang & Enrico Zio & Hongyan Dui & Yadong Zhang, 2023. "Importance measures for critical components in complex system based on Copula Hierarchical Bayesian Network," Post-Print hal-04103914, HAL.
    6. Zhang, Yue & Weng, Wenguo & Qi, Qingjie, 2023. "Resilience assessment and enhancement methods of large-scale gas distribution networks against disruptions due to earthquakes," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    7. Wandelt, Sebastian & Xu, Yifan & Sun, Xiaoqian, 2023. "Measuring node importance in air transportation systems: On the quality of complex network estimations," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    8. Wang, Shuliang & Lv, Wenzhuo & Zhao, Longfeng & Nie, Sen & Stanley, H. Eugene, 2019. "Structural and functional robustness of networked critical infrastructure systems under different failure scenarios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 476-487.
    9. Wei, Wei & Wang, Pengpeng & Zhang, Qinghui, 2023. "Optimal pruned tree-cut mapping-based fast shielding for large-scale networks," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    10. Cui, Pengshuai & Zhu, Peidong & Wang, Ke & Xun, Peng & Xia, Zhuoqun, 2018. "Enhancing robustness of interdependent network by adding connectivity and dependence links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 185-197.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongli Zhou & Mingxuan Yang, 2023. "Towards Evaluating the Robustness of the Open-Source Product Community under Multiple Attack Strategies," Sustainability, MDPI, vol. 15(17), pages 1-19, August.
    2. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & He, Zhichao, 2024. "A network-based approach to improving robustness of a high-speed train by structure adjustment," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Wei, Wei & Sun, Guobin & Zhang, Qinghui, 2024. "Large-scale robustness-oriented efficient edge addition through traversal tree-based weak edge identification," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    4. Yang, Guizhen & Qi, Xiaogang & Liu, Lifang, 2020. "Research on network robustness based on different deliberate attack methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    5. Kurmankhojayev, Daniyar & Li, Guoyuan & Chen, Anthony, 2024. "Link criticality index: Refinement, framework extension, and a case study," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    6. Alexander Shiroky & Andrey Kalashnikov, 2021. "Mathematical Problems of Managing the Risks of Complex Systems under Targeted Attacks with Known Structures," Mathematics, MDPI, vol. 9(19), pages 1-11, October.
    7. Wang, Jie & Zhang, Yangyi & Li, Shunlong & Xu, Wencheng & Jin, Yao, 2024. "Directed network-based connectivity probability evaluation for urban bridges," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    8. Yeh, Wei-Chang, 2024. "A new hybrid inequality BAT for comprehensive all-level d-MP identification using minimal paths in Multistate Flow Network reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    9. Xue Guo & Hu Zhang & Tianhai Tian, 2019. "Multi-Likelihood Methods for Developing Stock Relationship Networks Using Financial Big Data," Papers 1906.08088, arXiv.org.
    10. Zang, Tianlei & Gao, Shibin & Liu, Baoxu & Huang, Tao & Wang, Tao & Wei, Xiaoguang, 2019. "Integrated fault propagation model based vulnerability assessment of the electrical cyber-physical system under cyber attacks," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 232-241.
    11. Bai, Guanghan & Zuo, Ming J. & Tian, Zhigang, 2015. "Search for all d-MPs for all d levels in multistate two-terminal networks," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 300-309.
    12. Liu, Wenjing & Delahaye, Daniel & Cetek, Fulya Aybek & Zhao, Qiuhong & Notry, Philippe, 2024. "Comparison of performance between PMS and trombone arrival route topologies in terminal maneuvering area," Journal of Air Transport Management, Elsevier, vol. 115(C).
    13. Wang, Shuliang & Chen, Chen & Zhang, Jianhua & Gu, Xifeng & Huang, Xiaodi, 2022. "Vulnerability assessment of urban road traffic systems based on traffic flow," International Journal of Critical Infrastructure Protection, Elsevier, vol. 38(C).
    14. Niu, Yi-Feng & Gao, Zi-You & Lam, William H.K., 2017. "A new efficient algorithm for finding all d-minimal cuts in multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 151-163.
    15. Kozyra, Paweł Marcin, 2023. "The usefulness of (d,b)-MCs and (d,b)-MPs in network reliability evaluation under delivery or maintenance cost constraints," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    16. Wandelt, Sebastian & Sun, Xiaoqian & Zhang, Anming, 2023. "Towards analyzing the robustness of the Integrated Global Transportation Network Abstraction (IGTNA)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    17. Choudhry, Arnav & Qian, Sean, 2024. "Quantification of truck accessibility in urban last-mile deliveries using GPS probe data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    18. Zheng, Shuwen & Wang, Chong & Zio, Enrico & Liu, Jie, 2024. "Fault detection in complex mechatronic systems by a hierarchical graph convolution attention network based on causal paths," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    19. Yeh, Wei-Chang & Tan, Shi-Yi & Zhu, Wenbo & Huang, Chia-Ling & Yang, Guang-yi, 2022. "Novel binary addition tree algorithm (BAT) for calculating the direct lower-bound of the highly reliable binary-state network reliability," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    20. Liu, Xiangyu & Xiong, Guojiang & Mirjalili, Seyedali, 2024. "Accurate fault section diagnosis of power systems with a binary adaptive quadratic interpolation learning differential evolution," Reliability Engineering and System Safety, Elsevier, vol. 248(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.