IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v226y2013i3p522-535.html
   My bibliography  Save this article

Weighted Multivariate Mean Square Error for processes optimization: A case study on flux-cored arc welding for stainless steel claddings

Author

Listed:
  • Gomes, J.H.F.
  • Paiva, A.P.
  • Costa, S.C.
  • Balestrassi, P.P.
  • Paiva, E.J.

Abstract

A mathematical programming technique developed recently that optimizes multiple correlated characteristics is the Multivariate Mean Square Error (MMSE). The MMSE approach has obtained noteworthy results, by avoiding the production of inappropriate optimal points that can occur when a method fails to take into account a correlation structure. Where the MMSE approach is deficient, however, is in cases where the multiple correlated characteristics need to be optimized with varying degrees of importance. The MMSE approach, in treating all responses as having the same importance, is unable to attribute the desired weights. This paper thus introduces a strategy that weights the responses in the MMSE approach. The method, called the Weighted Multivariate Mean Square Error (WMMSE), utilizes a weighting procedure that integrates Principal Component Analysis (PCA) and Response Surface Methodology (RSM). In doing so, WMMSE obtains uncorrelated weighted objective functions from the original responses. After being mathematically programmed, these functions are optimized by employing optimization algorithms. We applied WMMSE to optimize a stainless steel cladding application executed via the flux-cored arc welding (FCAW) process. Four input parameters and eight response variables were considered. Stainless steel cladding, which carries potential benefits for a variety of industries, takes low cost materials and deposits over their surfaces materials having anti-corrosive properties. Optimal results were confirmed, which ensured the deposition of claddings with defect-free beads exhibiting the desired geometry and demonstrating good productivity indexes.

Suggested Citation

  • Gomes, J.H.F. & Paiva, A.P. & Costa, S.C. & Balestrassi, P.P. & Paiva, E.J., 2013. "Weighted Multivariate Mean Square Error for processes optimization: A case study on flux-cored arc welding for stainless steel claddings," European Journal of Operational Research, Elsevier, vol. 226(3), pages 522-535.
  • Handle: RePEc:eee:ejores:v:226:y:2013:i:3:p:522-535
    DOI: 10.1016/j.ejor.2012.11.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712008946
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.11.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Zhen & Zhu, Peng-Fei & Park, Sung-Hyun, 2012. "A robust desirability function method for multi-response surface optimization considering model uncertainty," European Journal of Operational Research, Elsevier, vol. 221(1), pages 241-247.
    2. Liu, Songquan & Moskowitz, Herbert & Plante, Robert & Preckel, Paul V., 2002. "Product and process yield estimation with Gaussian quadrature (GQ) reduction: Improvements over the GQ full factorial approach," European Journal of Operational Research, Elsevier, vol. 140(3), pages 655-669, August.
    3. Safizadeh, M. Hossein, 2002. "Minimizing the bias and variance of the gradient estimate in RSM simulation studies," European Journal of Operational Research, Elsevier, vol. 136(1), pages 121-135, January.
    4. Georgieva, A. & Jordanov, I., 2009. "Global optimization based on novel heuristics, low-discrepancy sequences and genetic algorithms," European Journal of Operational Research, Elsevier, vol. 196(2), pages 413-422, July.
    5. Poojari, Chandra A. & Varghese, Boby, 2008. "Genetic Algorithm based technique for solving Chance Constrained Problems," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1128-1154, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ifrah Tahir & Ali Nasir & Abdullah Algethami, 2022. "Optimal Control Policy for Energy Management of a Commercial Bank," Energies, MDPI, vol. 15(6), pages 1-19, March.
    2. Bera, Sasadhar & Mukherjee, Indrajit, 2016. "A multistage and multiple response optimization approach for serial manufacturing system," European Journal of Operational Research, Elsevier, vol. 248(2), pages 444-452.
    3. Wang, Jianjun & Ma, Yizhong & Ouyang, Linhan & Tu, Yiliu, 2016. "A new Bayesian approach to multi-response surface optimization integrating loss function with posterior probability," European Journal of Operational Research, Elsevier, vol. 249(1), pages 231-237.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, M. & Zhuan, X., 2013. "Optimal planning for wind power capacity in an electric power system," Renewable Energy, Elsevier, vol. 53(C), pages 280-286.
    2. Angun, M.E. & Kleijnen, Jack P.C., 2012. "An asymptotic test of optimality conditions in multiresponse simulation optimization," Other publications TiSEM a69dfa59-b0e1-45bd-8cd6-a, Tilburg University, School of Economics and Management.
    3. Qi Liu & Gengzhong Feng & Giri Kumar Tayi & Jun Tian, 2021. "Managing Data Quality of the Data Warehouse: A Chance-Constrained Programming Approach," Information Systems Frontiers, Springer, vol. 23(2), pages 375-389, April.
    4. Linhan Ouyang & Yizhong Ma & Jianxiong Chen & Zhigang Zeng & Yiliu Tu, 2016. "Robust optimisation of Nd: YLF laser beam micro-drilling process using Bayesian probabilistic approach," International Journal of Production Research, Taylor & Francis Journals, vol. 54(21), pages 6644-6659, November.
    5. Hu, Qing-Mi & Hu, Shaolong & Wang, Jian & Li, Xiaoping, 2021. "Stochastic single allocation hub location problems with balanced utilization of hub capacities," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 204-227.
    6. Sun, Wei & Huang, Guo H. & Lv, Ying & Li, Gongchen, 2013. "Inexact joint-probabilistic chance-constrained programming with left-hand-side randomness: An application to solid waste management," European Journal of Operational Research, Elsevier, vol. 228(1), pages 217-225.
    7. Carrillo-Galvez, Adrian & Flores-Bazán, Fabián & Parra, Enrique López, 2022. "Effect of models uncertainties on the emission constrained economic dispatch. A prediction interval-based approach," Applied Energy, Elsevier, vol. 317(C).
    8. Nezamoddini, Nasim & Gholami, Amirhosein & Aqlan, Faisal, 2020. "A risk-based optimization framework for integrated supply chains using genetic algorithm and artificial neural networks," International Journal of Production Economics, Elsevier, vol. 225(C).
    9. Majid Baghery & Samuel Yousefi & Mustafa Jahangoshai Rezaee, 2018. "Risk measurement and prioritization of auto parts manufacturing processes based on process failure analysis, interval data envelopment analysis and grey relational analysis," Journal of Intelligent Manufacturing, Springer, vol. 29(8), pages 1803-1825, December.
    10. Bentaha, Mohand Lounes & Battaïa, Olga & Dolgui, Alexandre & Hu, S. Jack, 2015. "Second order conic approximation for disassembly line design with joint probabilistic constraints," European Journal of Operational Research, Elsevier, vol. 247(3), pages 957-967.
    11. Charles-Olivier Amédée-Manesme & Fabrice Barthélémy & Didier Maillard, 2019. "Computation of the corrected Cornish–Fisher expansion using the response surface methodology: application to VaR and CVaR," Annals of Operations Research, Springer, vol. 281(1), pages 423-453, October.
    12. Kleijnen, Jack P. C. & den Hertog, Dick & Angun, Ebru, 2004. "Response surface methodology's steepest ascent and step size revisited," European Journal of Operational Research, Elsevier, vol. 159(1), pages 121-131, November.
    13. Hadi Moheb-Alizadeh & Robert B. Handfield, 2017. "Developing Talent from a Supply–Demand Perspective: An Optimization Model for Managers," Logistics, MDPI, vol. 1(1), pages 1-29, August.
    14. Bettonvil, Bert & del Castillo, Enrique & Kleijnen, Jack P.C., 2009. "Statistical testing of optimality conditions in multiresponse simulation-based optimization," European Journal of Operational Research, Elsevier, vol. 199(2), pages 448-458, December.
    15. Angun, M.E. & Gürkan, G. & den Hertog, D. & Kleijnen, J.P.C., 2002. "Response surface methodology revisited," Other publications TiSEM 32c35a04-3de9-4dee-a242-6, Tilburg University, School of Economics and Management.
    16. Udhayakumar, A. & Charles, V. & Kumar, Mukesh, 2011. "Stochastic simulation based genetic algorithm for chance constrained data envelopment analysis problems," Omega, Elsevier, vol. 39(4), pages 387-397, August.
    17. Ebru Angün & Jack Kleijnen, 2012. "An Asymptotic Test of Optimality Conditions in Multiresponse Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 53-65, February.
    18. Ouyang, Linhan & Ma, Yizhong & Wang, Jianjun & Tu, Yiliu, 2017. "A new loss function for multi-response optimization with model parameter uncertainty and implementation errors," European Journal of Operational Research, Elsevier, vol. 258(2), pages 552-563.
    19. Sergey S. Rabotyagov & Adriana M. Valcu-Lisman & Catherine L. Kling, 2016. "Resilient Provision of Ecosystem Services from Agricultural Landscapes: Trade-offs Involving Means and Variances of Water Quality Improvements," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(5), pages 1295-1313.
    20. Wang, Jianjun & Ma, Yizhong & Ouyang, Linhan & Tu, Yiliu, 2016. "A new Bayesian approach to multi-response surface optimization integrating loss function with posterior probability," European Journal of Operational Research, Elsevier, vol. 249(1), pages 231-237.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:226:y:2013:i:3:p:522-535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.