IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v240y2023ics0951832023005008.html
   My bibliography  Save this article

Dynamic loading and condition-based maintenance policies for multi-state systems with periodic inspection

Author

Listed:
  • Zhao, Xian
  • Chai, Xiaofei
  • Cao, Shuai
  • Qiu, Qingan

Abstract

Many engineering systems suffer gradual deterioration due to both external environmental damage and internal stress caused by working loads. System degradation is directly related to its working load, providing opportunities to control degradation by adjusting the workload. However, most existing research neglects the effect of environmental factors on system failure behavior and maintenance decisions. This paper addresses this research gap by investigating the optimal joint inspection interval, condition-based maintenance, and loading policies for systems operating in a random shock environment. We formulated the problem as a Markov decision process aimed at minimizing the long-run discounted cost, utilizing the value iteration algorithm to find optimal integrated policies while analyzing the corresponding structural properties of the policy. We extended our model by characterizing the shock arrival process with a non-homogeneous Poisson process, conducting comprehensive policy comparison and parameter sensitivity analyses through a numerical example. Our results illustrate that dynamic working load adjustment significantly impacts system degradation and the long-run expected cost. Moreover, the optimal joint policy is highly dependent on the relationship between the working load and system state deterioration. Finally, we derived some managerial implications for the joint development of load regulation and maintenance implementation to support decision-making.

Suggested Citation

  • Zhao, Xian & Chai, Xiaofei & Cao, Shuai & Qiu, Qingan, 2023. "Dynamic loading and condition-based maintenance policies for multi-state systems with periodic inspection," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023005008
    DOI: 10.1016/j.ress.2023.109586
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023005008
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109586?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023005008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.