IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v240y2023ics0951832023005008.html
   My bibliography  Save this article

Dynamic loading and condition-based maintenance policies for multi-state systems with periodic inspection

Author

Listed:
  • Zhao, Xian
  • Chai, Xiaofei
  • Cao, Shuai
  • Qiu, Qingan

Abstract

Many engineering systems suffer gradual deterioration due to both external environmental damage and internal stress caused by working loads. System degradation is directly related to its working load, providing opportunities to control degradation by adjusting the workload. However, most existing research neglects the effect of environmental factors on system failure behavior and maintenance decisions. This paper addresses this research gap by investigating the optimal joint inspection interval, condition-based maintenance, and loading policies for systems operating in a random shock environment. We formulated the problem as a Markov decision process aimed at minimizing the long-run discounted cost, utilizing the value iteration algorithm to find optimal integrated policies while analyzing the corresponding structural properties of the policy. We extended our model by characterizing the shock arrival process with a non-homogeneous Poisson process, conducting comprehensive policy comparison and parameter sensitivity analyses through a numerical example. Our results illustrate that dynamic working load adjustment significantly impacts system degradation and the long-run expected cost. Moreover, the optimal joint policy is highly dependent on the relationship between the working load and system state deterioration. Finally, we derived some managerial implications for the joint development of load regulation and maintenance implementation to support decision-making.

Suggested Citation

  • Zhao, Xian & Chai, Xiaofei & Cao, Shuai & Qiu, Qingan, 2023. "Dynamic loading and condition-based maintenance policies for multi-state systems with periodic inspection," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023005008
    DOI: 10.1016/j.ress.2023.109586
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023005008
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109586?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marzieh Hashemi & Majid Asadi, 2021. "Optimal preventive maintenance of coherent systems: A generalized PĆ³lya process approach," IISE Transactions, Taylor & Francis Journals, vol. 53(11), pages 1266-1280, November.
    2. Peng, Hao & van Houtum, Geert-Jan, 2016. "Joint optimization of condition-based maintenance and production lot-sizing," European Journal of Operational Research, Elsevier, vol. 253(1), pages 94-107.
    3. Zhao, Xian & Sun, Jinglei & Qiu, Qingan & Chen, Ke, 2021. "Optimal inspection and mission abort policies for systems subject to degradation," European Journal of Operational Research, Elsevier, vol. 292(2), pages 610-621.
    4. Tao Jiang & Yu Liu, 2020. "Robust selective maintenance strategy under imperfect observations: A multi-objective perspective," IISE Transactions, Taylor & Francis Journals, vol. 52(7), pages 751-768, July.
    5. Uit Het Broek, Michiel A.J. & Teunter, Ruud H. & de Jonge, Bram & Veldman, Jasper, 2021. "Joint condition-based maintenance and load-sharing optimization for two-unit systems with economic dependency," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1119-1131.
    6. Liu, Yu & Chen, Yiming & Jiang, Tao, 2020. "Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 166-181.
    7. Zhang, Xiaohong & Zeng, Jianchao, 2017. "Joint optimization of condition-based opportunistic maintenance and spare parts provisioning policy in multiunit systems," European Journal of Operational Research, Elsevier, vol. 262(2), pages 479-498.
    8. Zhao, Xian & Fan, Yu & Qiu, Qingan & Chen, Ke, 2021. "Multi-criteria mission abort policy for systems subject to two-stage degradation process," European Journal of Operational Research, Elsevier, vol. 295(1), pages 233-245.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ning, Ru & Wang, Xiaoyue & Zhao, Xian & Li, Ziyue, 2024. "Joint optimization of preventive maintenance and triggering mechanism for k-out-of-n: F systems with protective devices based on periodic inspection," Reliability Engineering and System Safety, Elsevier, vol. 251(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xian & Li, Rong & Han, He & Qiu, Qingan, 2025. "Condition-based switching, loading, and age-based maintenance policies for standby systems," European Journal of Operational Research, Elsevier, vol. 321(2), pages 565-585.
    2. Liu, Lujie & Yang, Jun, 2023. "A dynamic mission abort policy for the swarm executing missions and its solution method by tailored deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    3. Zhao, Xian & Lv, Zuheng & Qiu, Qingan & Wu, Yaguang, 2023. "Designing two-level rescue depot location and dynamic rescue policies for unmanned vehicles," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    4. Zheng, Rui & Wang, Jingjing & Zhang, Yingzhi, 2023. "A hybrid repair-replacement policy in the proportional hazards model," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1011-1021.
    5. Xian Zhao & Rong Li & Yu Fan & Qingan Qiu, 2022. "Reliability modeling for multi-state systems with a protective device considering multiple triggering mechanism," Journal of Risk and Reliability, , vol. 236(1), pages 173-193, February.
    6. Zhao, Xian & Li, Rong & Cao, Shuai & Qiu, Qingan, 2023. "Joint modeling of loading and mission abort policies for systems operating in dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    7. Zhang, Qin & Liu, Yu & Xiang, Yisha & Xiahou, Tangfan, 2024. "Reinforcement learning in reliability and maintenance optimization: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    8. Zhao, Xian & He, Zongda & Wu, Yaguang & Qiu, Qingan, 2022. "Joint optimization of condition-based performance control and maintenance policies for mission-critical systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    9. Zhao, Xian & Wang, Xinlei & Dai, Ying & Qiu, Qingan, 2024. "Joint optimization of loading, mission abort and rescue site selection policies for UAV," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    10. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Optimal aborting policy for shock exposed missions with random rescue time," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    11. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "Optimal system loading and aborting in additive multi-attempt missions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    12. Zhang, Wenyu & He, Shuguang & Zhang, Xiaohong & Zhao, Xing, 2024. "Joint optimization of job scheduling, condition-based maintenance planning, and spare parts ordering for degrading production systems," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    13. Ke Chen & Xian Zhao & Qingan Qiu, 2022. "Optimal Task Abort and Maintenance Policies Considering Time Redundancy," Mathematics, MDPI, vol. 10(9), pages 1-16, April.
    14. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Optimal mission aborting in multistate systems with storage," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    15. Zhao, Xian & Dai, Ying & Qiu, Qingan & Wu, Yaguang, 2022. "Joint optimization of mission aborts and allocation of standby components considering mission loss," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    16. Yan, Tao & Lei, Yaguo & Wang, Biao & Han, Tianyu & Si, Xiaosheng & Li, Naipeng, 2020. "Joint maintenance and spare parts inventory optimization for multi-unit systems considering imperfect maintenance actions," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    17. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Using kamikaze components in multi-attempt missions with abort option," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    18. Lijun Shang & Xiguang Yu & Liying Wang & Yongjun Du, 2022. "Design of Random Warranty and Maintenance Policy: From a Perspective of the Life Cycle," Mathematics, MDPI, vol. 10(20), pages 1-22, October.
    19. Liu, Lujie & Yang, Jun & Yan, Bingxin, 2024. "A dynamic mission abort policy for transportation systems with stochastic dependence by deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    20. Yaguang Wu & Qingan Qiu, 2022. "Optimal Triggering Policy of Protective Devices Considering Self-Exciting Mechanism of Shocks," Mathematics, MDPI, vol. 10(15), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023005008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.