IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v52y2020i7p751-768.html
   My bibliography  Save this article

Robust selective maintenance strategy under imperfect observations: A multi-objective perspective

Author

Listed:
  • Tao Jiang
  • Yu Liu

Abstract

Selective maintenance, as a pervasive maintenance policy in both military and industrial environments, aims to achieve the maximum success of subsequent missions under limited maintenance resources by choosing an optimal subset of feasible maintenance actions. The existing works on selective maintenance optimization all assume that the condition of components in a system can be perfectly observed after the system completes the last mission. However, such a premise may not always be true in reality due to the limited accuracy/precision of sensors or inspection instruments. To fill this gap, a new robust selective maintenance model is proposed in this work to consider uncertainties that originate from imperfect observations. The uncertainties associated with imperfect observations are incorporated into the states and effective ages of components via Bayes rule. The Kijima type II model, as a specific imperfect maintenance model, is used to characterize the imperfect maintenance efficiency of each selected maintenance action. The expectation and variance of the probability of a repairable system successfully completing the subsequent mission are derived to quantify the uncertainty that is propagated from imperfect observations. To guarantee the robustness of a selective maintenance strategy under uncertainties, a multi-objective selective maintenance model is constructed with the aims of maximizing the expectation of the probability that a system successfully completes the subsequent mission and to simultaneously minimizing the variance in this probability. The Pareto-optimality approach is utilized to offer a set of non-dominated solutions. Two illustrative examples are presented to demonstrate the advantages of the proposed method.

Suggested Citation

  • Tao Jiang & Yu Liu, 2020. "Robust selective maintenance strategy under imperfect observations: A multi-objective perspective," IISE Transactions, Taylor & Francis Journals, vol. 52(7), pages 751-768, July.
  • Handle: RePEc:taf:uiiexx:v:52:y:2020:i:7:p:751-768
    DOI: 10.1080/24725854.2019.1649505
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2019.1649505
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2019.1649505?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jafar-Zanjani, Hamed & Zandieh, Mostafa & Sharifi, Mani, 2022. "Robust and resilient joint periodic maintenance planning and scheduling in a multi-factory network under uncertainty: A case study," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    2. Yin, Mingang & Liu, Yu & Liu, Shuntao & Chen, Yiming & Yan, Yutao, 2023. "Scheduling heterogeneous repair channels in selective maintenance of multi-state systems with maintenance duration uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    3. Hamzea Al-Jabouri & Ahmed Saif & Claver Diallo, 2023. "Robust selective maintenance optimization of series–parallel mission-critical systems subject to maintenance quality uncertainty," Computational Management Science, Springer, vol. 20(1), pages 1-31, December.
    4. Ghorbani, Milad & Nourelfath, Mustapha & Gendreau, Michel, 2024. "Stochastic programming for selective maintenance optimization with uncertainty in the next mission conditions," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Zhang, Qin & Liu, Yu & Xiahou, Tangfan & Huang, Hong-Zhong, 2023. "A heuristic maintenance scheduling framework for a military aircraft fleet under limited maintenance capacities," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:52:y:2020:i:7:p:751-768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.