IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v239y2023ics0951832023003903.html
   My bibliography  Save this article

Improved resistance prediction and reliability for bridge pile foundation in shales through optimal site investigation plans

Author

Listed:
  • Oluwatuyi, Opeyemi E.
  • Ng, Kam
  • Wulff, Shaun S.

Abstract

Site investigation (SI) provides relevant subsurface information for designing piles driven into soft rocks or intermediate geomaterials (IGMs) such as shale. However, uncertainties in geological and ground (geomaterial) conditions pose challenges to accurately predicting pile resistance and ensuring design reliability. This study used multinomial categorical prediction (MCP) and conditional simulation on a random field to develop an optimal SI plan (OSIP). The OSIP aims to minimize geomaterial uncertainties, improve design efficiency, and enhance the economic benefits of pile foundations. The proposed method integrates OSIP with static analysis (SA) methods. This integration enhances the calibrated resistance factor from the load and resistance factor design (LRFD) by improving the quality of geomaterial information used in pile resistance prediction. The effectiveness of the proposed method is demonstrated using a database consisting of 22 steel end-bearing H-piles that are driven into weathered shales and load tested in Kansas, Iowa, and Wyoming. By incorporating OSIP into pile design, the prediction error of end-bearing resistance is decreased by 25.6%, and the LRFD resistance factor for redundant piles is increased by 20%. Furthermore, a cost-benefit analysis of the pile design reveals an average saving of approximately $39,410 per foundation. Break-even analysis further supports OSIP as a cost-effective SI plan option for enhancing pile design.

Suggested Citation

  • Oluwatuyi, Opeyemi E. & Ng, Kam & Wulff, Shaun S., 2023. "Improved resistance prediction and reliability for bridge pile foundation in shales through optimal site investigation plans," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
  • Handle: RePEc:eee:reensy:v:239:y:2023:i:c:s0951832023003903
    DOI: 10.1016/j.ress.2023.109476
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023003903
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109476?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Chi & Wang, Zeyu & Shafieezadeh, Abdollah, 2021. "Error Quantification and Control for Adaptive Kriging-Based Reliability Updating with Equality Information," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    2. Argyroudis, Sotirios A. & Mitoulis, Stergios Aristoteles, 2021. "Vulnerability of bridges to individual and multiple hazards- floods and earthquakes," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    3. Wang, Zeyu & Shafieezadeh, Abdollah & Xiao, Xiong & Wang, Xiaowei & Li, Quanwang, 2022. "Optimal monitoring location for tracking evolving risks to infrastructure systems: Theory and application to tunneling excavation risk," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    4. Liu, Wenli & Chen, Elton J. & Yao, Erlei & Wang, Yanyu & Chen, Yangyang, 2021. "Reliability analysis of face stability for tunnel excavation in a dependent system," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    5. Zhang, Limao & Lin, Penghui, 2021. "Multi-objective optimization for limiting tunnel-induced damages considering uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Deng, Jian, 2022. "Probabilistic characterization of soil properties based on the maximum entropy method from fractional moments: Model development, case study, and application," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiadong, Qiu & Ohl, Joy P. & Tran, Trung-Tin, 2024. "Predicting clay compressibility for foundation design with high reliability and safety: A geotechnical engineering perspective using artificial neural network and five metaheuristic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Jerez, Danko J. & Chwała, M. & Jensen, Hector A. & Beer, Michael, 2024. "Optimal borehole placement for the design of rectangular shallow foundation systems under undrained soil conditions: A stochastic framework," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Liuyang & Zhang, Limao, 2022. "Enhanced prediction intervals of tunnel-induced settlement using the genetic algorithm and neural network," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    2. Liu, Wenli & Li, Ang & Fang, Weili & Love, Peter E.D. & Hartmann, Timo & Luo, Hanbin, 2023. "A hybrid data-driven model for geotechnical reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    3. Shirgir, Sina & Shamsaddinlou, Amir & Zare, Reza Najafi & Zehtabiyan, Sorour & Bonab, Masoud Hajialilue, 2023. "An efficient double-loop reliability-based optimization with metaheuristic algorithms to design soil nail walls under uncertain condition," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    4. Wang, Zeyu & Shafieezadeh, Abdollah, 2023. "Bayesian updating with adaptive, uncertainty-informed subset simulations: High-fidelity updating with multiple observations," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Yong, Weixun & Zhang, Wengang & Nguyen, Hoang & Bui, Xuan-Nam & Choi, Yosoon & Nguyen-Thoi, Trung & Zhou, Jian & Tran, Trung Tin, 2022. "Analysis and prediction of diaphragm wall deflection induced by deep braced excavations using finite element method and artificial neural network optimized by metaheuristic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    6. Song, Chaolin & Xiao, Rucheng & Zhang, Chi & Zhao, Xinwei & Sun, Bo, 2024. "Simulation-free reliability analysis with importance sampling-based adaptive training physics-informed neural networks: Method and application to chloride penetration," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    7. Bemah Ibrahim & Isaac Ahenkorah & Anthony Ewusi, 2022. "Explainable Risk Assessment of Rockbolts’ Failure in Underground Coal Mines Based on Categorical Gradient Boosting and SHapley Additive exPlanations (SHAP)," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    8. Li, Chao & Diao, Yucheng & Li, Hong-Nan & Pan, Haiyang & Ma, Ruisheng & Han, Qiang & Xing, Yihan, 2023. "Seismic performance assessment of a sea-crossing cable-stayed bridge system considering soil spatial variability," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    9. Zhenliang Yu & Zhili Sun & Shengnan Zhang & Jian Wang, 2022. "The Coupled Thermal-Structural Resonance Reliability Sensitivity Analysis of Gear-Rotor System with Random Parameters," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    10. Zhang, Yu & Dong, You & Xu, Jun, 2023. "An accelerated active learning Kriging model with the distance-based subdomain and a new stopping criterion for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    11. Li, Peiping & Wang, Yu, 2022. "An active learning reliability analysis method using adaptive Bayesian compressive sensing and Monte Carlo simulation (ABCS-MCS)," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    12. Song, Chaolin & Zhang, Chi & Shafieezadeh, Abdollah & Xiao, Rucheng, 2022. "Value of information analysis in non-stationary stochastic decision environments: A reliability-assisted POMDP approach," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    13. Guo, Kai & Zhang, Limao, 2022. "Adaptive multi-objective optimization for emergency evacuation at metro stations," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    14. Marroni, Giulia & Casini, Leonardo & Bartolucci, Andrea & Kuipers, Sanneke & Casson Moreno, Valeria & Landucci, Gabriele, 2024. "Development of fragility models for process equipment affected by physical security attacks," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    15. Fahad, Md Golam Rabbani & Nazari, Rouzbeh & Motamedi, M.H. & Karimi, Maryam, 2022. "A Decision-Making Framework Integrating Fluid and Solid Systems to Assess Resilience of Coastal Communities Experiencing Extreme Storm Events," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    16. Zhang, Yan & Teoh, Bak Koon & Wu, Maozhi & Chen, Jiayu & Zhang, Limao, 2023. "Data-driven estimation of building energy consumption and GHG emissions using explainable artificial intelligence," Energy, Elsevier, vol. 262(PA).
    17. Pei, Liang & Chen, Chen & He, Kun & Lu, Xiang, 2022. "System reliability of a gravity dam-foundation system using Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    18. Qu, Pengfei & Zhang, Limao & Zhu, Qizhi & Wu, Maozhi, 2023. "Probabilistic reliability assessment of twin tunnels considering fluid–solid coupling with physics-guided machine learning," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    19. Lin, Penghui & Zhang, Limao & Tiong, Robert L.K., 2023. "Multi-objective robust optimization for enhanced safety in large-diameter tunnel construction with interactive and explainable AI," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    20. Li, Pei-Pei & Zhang, Yi & Zhao, Yan-Gang & Zhao, Zhao & Cai, Enjian, 2023. "An information reuse-based method for reliability updating," Reliability Engineering and System Safety, Elsevier, vol. 239(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:239:y:2023:i:c:s0951832023003903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.