IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v35y2015i9p1640-1651.html
   My bibliography  Save this article

Bayesian Inference for Reliability of Systems and Networks Using the Survival Signature

Author

Listed:
  • Louis J. M. Aslett
  • Frank P. A. Coolen
  • Simon P. Wilson

Abstract

The concept of survival signature has recently been introduced as an alternative to the signature for reliability quantification of systems. While these two concepts are closely related for systems consisting of a single type of component, the survival signature is also suitable for systems with multiple types of component, which is not the case for the signature. This also enables the use of the survival signature for reliability of networks. In this article, we present the use of the survival signature for reliability quantification of systems and networks from a Bayesian perspective. We assume that data are available on tested components that are exchangeable with those in the actual system or network of interest. These data consist of failure times and possibly right‐censoring times. We present both a nonparametric and parametric approach.

Suggested Citation

  • Louis J. M. Aslett & Frank P. A. Coolen & Simon P. Wilson, 2015. "Bayesian Inference for Reliability of Systems and Networks Using the Survival Signature," Risk Analysis, John Wiley & Sons, vol. 35(9), pages 1640-1651, September.
  • Handle: RePEc:wly:riskan:v:35:y:2015:i:9:p:1640-1651
    DOI: 10.1111/risa.12228
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12228
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12228?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jorge Navarro & Hon Keung Tony Ng & Narayanaswamy Balakrishnan, 2012. "Parametric inference for component distributions from lifetimes of systems with dependent components," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(7), pages 487-496, October.
    2. Francisco J. Samaniego, 2007. "System Signatures and their Applications in Engineering Reliability," International Series in Operations Research and Management Science, Springer, number 978-0-387-71797-5, December.
    3. Narayanaswamy Balakrishnan & Hon Ng & Jorge Navarro, 2011. "Exact nonparametric inference for component lifetime distribution based on lifetime data from systems with known signatures," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(3), pages 741-752.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Xianzhen & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2019. "A heuristic survival signature based approach for reliability-redundancy allocation," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 511-517.
    2. Tavangar, Mahdi & Hashemi, Marzieh, 2022. "Reliability and maintenance analysis of coherent systems subject to aging and environmental shocks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    3. Sadiya & Mangey Ram & Akshay Kumar, 2022. "A New Approach to Compute System Reliability with Three-Serially Linked Modules," Mathematics, MDPI, vol. 11(1), pages 1-18, December.
    4. Hindolo George-Williams & Geng Feng & Frank PA Coolen & Michael Beer & Edoardo Patelli, 2019. "Extending the survival signature paradigm to complex systems with non-repairable dependent failures," Journal of Risk and Reliability, , vol. 233(4), pages 505-519, August.
    5. Qin, Jinlei & Coolen, Frank P.A., 2022. "Survival signature for reliability evaluation of a multi-state system with multi-state components," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    6. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank PA & Coolen-Maturi, Tahani, 2023. "New reliability model for complex systems based on stochastic processes and survival signature," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1349-1364.
    7. Reed, Sean & Löfstrand, Magnus & Andrews, John, 2019. "An efficient algorithm for computing exact system and survival signatures of K-terminal network reliability," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 429-439.
    8. Zheng, Yi-Xuan & Xiahou, Tangfan & Liu, Yu & Xie, Chaoyang, 2021. "Structure function learning of hierarchical multi-state systems with incomplete observation sequences," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Coolen-Maturi, Tahani & Coolen, Frank P.A. & Balakrishnan, Narayanaswamy, 2021. "The joint survival signature of coherent systems with shared components," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    10. Huang, Xianzhen & Aslett, Louis J.M. & Coolen, Frank P.A., 2019. "Reliability analysis of general phased mission systems with a new survival signature," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 416-422.
    11. Serkan Eryilmaz & Altan Tuncel, 2016. "Generalizing the survival signature to unrepairable homogeneous multi‐state systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(8), pages 593-599, December.
    12. Nabakumar Jana & Samadrita Bera, 2024. "Estimation of multicomponent system reliability for inverse Weibull distribution using survival signature," Statistical Papers, Springer, vol. 65(8), pages 5077-5108, October.
    13. Shi, Yan & Behrensdorf, Jasper & Zhou, Jiayan & Hu, Yue & Broggi, Matteo & Beer, Michael, 2024. "Network reliability analysis through survival signature and machine learning techniques," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    14. Yang, Lechang & Wang, Pidong & Wang, Qiang & Bi, Sifeng & Peng, Rui & Behrensdorf, Jasper & Beer, Michael, 2021. "Reliability analysis of a complex system with hybrid structures and multi-level dependent life metrics," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    15. Cui, L.X. & Du, Yi-Mu & Sun, C.P., 2023. "On system reliability for time-varying structure," Reliability Engineering and System Safety, Elsevier, vol. 234(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingjing Qu & Hon Keung Tony Ng & Chul Moon, 2024. "Empirical likelihood ratio tests for homogeneity of component lifetime distributions based on system lifetime data," Computational Statistics, Springer, vol. 39(6), pages 3007-3029, September.
    2. Jian Zhang & Hon Keung Tony Ng & Narayanaswamy Balakrishnan, 2015. "Tests for homogeneity of distributions of component lifetimes from system lifetime data with known system signatures," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(7), pages 550-563, October.
    3. Erhard Cramer & Jorge Navarro, 2015. "Progressive Type‐II censoring and coherent systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(6), pages 512-530, September.
    4. M. Chahkandi & Jafar Ahmadi & S. Baratpour, 2014. "Non-parametric prediction intervals for the lifetime of coherent systems," Statistical Papers, Springer, vol. 55(4), pages 1019-1034, November.
    5. Jia, Xujie & Shen, Jingyuan & Xu, Fanqi & Ma, Ruihong & Song, Xueying, 2019. "Modular decomposition signature for systems with sequential failure effect," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 435-444.
    6. Zhu, Xiaojun & Balakrishnan, N., 2023. "Non-parametric inference based on reliability life-test of non-identical coherent systems with application to warranty time," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    7. Gaofeng Da & Lvyu Xia & Taizhong Hu, 2014. "On Computing Signatures of k-out-of-n Systems Consisting of Modules," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 223-233, March.
    8. Feng, Geng & Patelli, Edoardo & Beer, Michael & Coolen, Frank P.A., 2016. "Imprecise system reliability and component importance based on survival signature," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 116-125.
    9. Zarezadeh, S. & Mohammadi, L. & Balakrishnan, N., 2018. "On the joint signature of several coherent systems with some shared components," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1092-1100.
    10. Hindolo George-Williams & Geng Feng & Frank PA Coolen & Michael Beer & Edoardo Patelli, 2019. "Extending the survival signature paradigm to complex systems with non-repairable dependent failures," Journal of Risk and Reliability, , vol. 233(4), pages 505-519, August.
    11. Zhengcheng Zhang & N. Balakrishnan, 2016. "Representations of the inactivity time for coherent systems with heterogeneous components and some ordered properties," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(1), pages 113-126, January.
    12. Bo H. Lindqvist & Francisco J. Samaniego, 2019. "Some new results on the preservation of the NBUE and NWUE aging classes under the formation of coherent systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(5), pages 430-438, August.
    13. Tomasz J. Kozubowski & Krzysztof Podgórski, 2018. "Kumaraswamy Distribution and Random Extrema," The Open Statistics and Probability Journal, Bentham Open, vol. 9(1), pages 18-25, July.
    14. Marichal, Jean-Luc & Mathonet, Pierre & Spizzichino, Fabio, 2015. "On modular decompositions of system signatures," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 19-32.
    15. Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2015. "Predictive inference for system reliability after common-cause component failures," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 27-33.
    16. Nabakumar Jana & Samadrita Bera, 2024. "Estimation of multicomponent system reliability for inverse Weibull distribution using survival signature," Statistical Papers, Springer, vol. 65(8), pages 5077-5108, October.
    17. Marichal, Jean-Luc & Mathonet, Pierre, 2013. "On the extensions of Barlow–Proschan importance index and system signature to dependent lifetimes," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 48-56.
    18. M. Burkschat & J. Navarro, 2014. "Asymptotic behavior of the hazard rate in systems based on sequential order statistics," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(8), pages 965-994, November.
    19. Salomon, Julian & Winnewisser, Niklas & Wei, Pengfei & Broggi, Matteo & Beer, Michael, 2021. "Efficient reliability analysis of complex systems in consideration of imprecision," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    20. Patelli, Edoardo & Feng, Geng & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2017. "Simulation methods for system reliability using the survival signature," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 327-337.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:35:y:2015:i:9:p:1640-1651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.