IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v114y2013icp52-60.html
   My bibliography  Save this article

Reusable rocket engine preventive maintenance scheduling using genetic algorithm

Author

Listed:
  • Chen, Tao
  • Li, Jiawen
  • Jin, Ping
  • Cai, Guobiao

Abstract

This paper deals with the preventive maintenance (PM) scheduling problem of reusable rocket engine (RRE), which is different from the ordinary repairable systems, by genetic algorithm. Three types of PM activities for RRE are considered and modeled by introducing the concept of effective age. The impacts of PM on all subsystems' aging processes are evaluated based on improvement factor model. Then the reliability of engine is formulated by considering the accumulated time effect. After that, optimization model subjected to reliability constraint is developed for RRE PM scheduling at fixed interval. The optimal PM combination is obtained by minimizing the total cost in the whole life cycle for a supposed engine. Numerical investigations indicate that the subsystem's intrinsic reliability characteristic and the improvement factor of maintain operations are the most important parameters in RRE's PM scheduling management.

Suggested Citation

  • Chen, Tao & Li, Jiawen & Jin, Ping & Cai, Guobiao, 2013. "Reusable rocket engine preventive maintenance scheduling using genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 52-60.
  • Handle: RePEc:eee:reensy:v:114:y:2013:i:c:p:52-60
    DOI: 10.1016/j.ress.2012.12.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832013000094
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2012.12.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Xiaojun & Lu, Zhiqiang & Xi, Lifeng, 2012. "Preventive maintenance optimization for a multi-component system under changing job shop schedule," Reliability Engineering and System Safety, Elsevier, vol. 101(C), pages 14-20.
    2. Chou, Jui-Sheng & Le, Thanh-Son, 2011. "Reliability-based performance simulation for optimized pavement maintenance," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1402-1410.
    3. Bartholomew-Biggs, Michael & Zuo, Ming J. & Li, Xiaohu, 2009. "Modelling and optimizing sequential imperfect preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 53-62.
    4. DEDOPOULOS, Illias & SMEERS, Yves, 1998. "An age reduction appraoch for finite horizon optimization of preventive maintenance for single units subject to random failures," LIDAM Reprints CORE 1318, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Zhenglin & Parlikad, Ajith Kumar, 2020. "Predictive group maintenance for multi-system multi-component networks," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    2. Shijin Wang & Ming Liu, 2016. "Two-machine flow shop scheduling integrated with preventive maintenance planning," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(3), pages 672-690, February.
    3. Debesh Mishra & Suchismita Satapathy, 2023. "Reliability and maintenance of agricultural machinery by MCDM approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 135-146, February.
    4. Lin, Boliang & Wu, Jianping & Lin, Ruixi & Wang, Jiaxi & Wang, Hui & Zhang, Xuhui, 2019. "Optimization of high-level preventive maintenance scheduling for high-speed trains," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 261-275.
    5. Liu, Yulang & Chen, Jinglong & Wang, Tiantian & Li, Aimin & Pan, Tongyang, 2023. "A variational transformer for predicting turbopump bearing condition under diverse degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    6. Anil Kr. Aggarwal & Vikram Singh & Sanjeev Kumar, 2017. "Availability analysis and performance optimization of a butter oil production system: a case study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(1), pages 538-554, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Mixin & Zhou, Xiaojun, 2023. "Hybrid opportunistic maintenance policy for serial-parallel multi-station manufacturing systems with spare part overlap," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    2. Seyed Habib A. Rahmati & Abbas Ahmadi & Kannan Govindan, 2018. "A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem: simulation-based optimization approach," Annals of Operations Research, Springer, vol. 269(1), pages 583-621, October.
    3. Barabadi, Abbas & Barabady, Javad & Markeset, Tore, 2014. "Application of reliability models with covariates in spare part prediction and optimization – A case study," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 1-7.
    4. Tanwar, Monika & Rai, Rajiv N. & Bolia, Nomesh, 2014. "Imperfect repair modeling using Kijima type generalized renewal process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 24-31.
    5. Hamidi, Maryam & Liao, Haitao & Szidarovszky, Ferenc, 2016. "Non-cooperative and cooperative game-theoretic models for usage-based lease contracts," European Journal of Operational Research, Elsevier, vol. 255(1), pages 163-174.
    6. Shafiee, Mahmood & Finkelstein, Maxim & Chukova, Stefanka, 2011. "On optimal upgrade level for used products under given cost structures," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 286-291.
    7. Kiassat, Corey & Safaei, Nima & Banjevic, Dragan, 2014. "Choosing the optimal intervention method to reduce human-related machine failures," European Journal of Operational Research, Elsevier, vol. 233(3), pages 604-612.
    8. Toledo, Maria Luíza Guerra de & Freitas, Marta A. & Colosimo, Enrico A. & Gilardoni, Gustavo L., 2015. "ARA and ARI imperfect repair models: Estimation, goodness-of-fit and reliability prediction," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 107-115.
    9. Liu, Bin & Xu, Zhengguo & Xie, Min & Kuo, Way, 2014. "A value-based preventive maintenance policy for multi-component system with continuously degrading components," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 83-89.
    10. Hu, Jiawen & Jiang, Zuhua & Liao, Haitao, 2017. "Preventive maintenance of a single machine system working under piecewise constant operating condition," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 105-115.
    11. Huang, Yeu-Shiang & Ho, Jyh-Wen & Hung, Jin-Wei & Tseng, Tzu-Liang (Bill), 2021. "A customized warranty model by considering multi-usage levels for the leasing industry," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    12. Lei Zhang & Yifan Zhou & Chuanhui Huang, 2017. "An approximate hybrid approach to maintenance optimisation for a system with multistate components," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(1), pages 189-196, March.
    13. Jianwen Guo & Zhenzhong Sun & Hong Tang & Xuejun Jia & Song Wang & Xiaohui Yan & Guoliang Ye & Guohong Wu, 2016. "Hybrid Optimization Algorithm of Particle Swarm Optimization and Cuckoo Search for Preventive Maintenance Period Optimization," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-12, February.
    14. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    15. Jingyi Zhao & Chunhai Gao & Tao Tang, 2022. "A Review of Sustainable Maintenance Strategies for Single Component and Multicomponent Equipment," Sustainability, MDPI, vol. 14(5), pages 1-22, March.
    16. Fang, Jianguang & Gao, Yunkai & Sun, Guangyong & Xu, Chengmin & Li, Qing, 2015. "Multiobjective robust design optimization of fatigue life for a truck cab," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 1-8.
    17. Colen, P.J. & Lambrecht, M.R., 2012. "Cross-training policies in field services," International Journal of Production Economics, Elsevier, vol. 138(1), pages 76-88.
    18. Mohammad Doostparast & Farhad Kolahan & Mahdi Doostparast, 2015. "Optimisation of PM scheduling for multi-component systems – a simulated annealing approach," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(7), pages 1199-1207, May.
    19. Zheng, Meimei & Su, Zhiyun & Wang, Dong & Pan, Ershun, 2024. "Joint maintenance and spare part ordering from multiple suppliers for multicomponent systems using a deep reinforcement learning algorithm," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    20. Vu, Hai Canh & Do, Phuc & Barros, Anne & Bérenguer, Christophe, 2014. "Maintenance grouping strategy for multi-component systems with dynamic contexts," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 233-249.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:114:y:2013:i:c:p:52-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.