IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v229y2023ics0951832022004550.html
   My bibliography  Save this article

A generalized dynamic stress-strength interference model under δ-failure criterion for self-healing protective structure

Author

Listed:
  • Ye, Kewei
  • Wang, Han
  • Ma, Xiaobing

Abstract

Traditional dynamic stress-strength interference (SSI) models usually assume that a failure occurs when the magnitude of a shock exceeds the strength. The assumption holds in most circumstances, while it is not applicable for self-healing protective structure which go through a recovery process after each shock. In this paper, a generalized dynamic SSI model combined with the δ-failure criterion is proposed to analyze the reliability for self-healing protective structure. Particularly, the shock is modeled as a non-homogenous Poisson process with stochastic time-varying magnitude, and the strength is modeled as a stochastic degradation path. Two different initial states (i.e., intact state and healing state) are considered under the δ-failure criterion. Then, a Gauss-Legendre-based hierarchical iteration algorithm is established to solve the complex reliability function including multiple internal and external nested integrations. Numerical solutions which can significantly improve the computational efficiency are provided. Finally, a simulation study and a real application to spur gear reducer are provided to illustrate the effectiveness of the proposed model and method.

Suggested Citation

  • Ye, Kewei & Wang, Han & Ma, Xiaobing, 2023. "A generalized dynamic stress-strength interference model under δ-failure criterion for self-healing protective structure," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
  • Handle: RePEc:eee:reensy:v:229:y:2023:i:c:s0951832022004550
    DOI: 10.1016/j.ress.2022.108838
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022004550
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108838?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christou, Christina & Gupta, Rangan & Nyakabawo, Wendy, 2019. "Time-varying impact of uncertainty shocks on the US housing market," Economics Letters, Elsevier, vol. 180(C), pages 15-20.
    2. Zhao, Bing & Yue, Dequan & Liao, Haitao & Liu, Yuanhui & Zhang, Xiaohong, 2021. "Performance analysis and optimization of a cold standby system subject to δ-shocks and imperfect repairs," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    3. Kong, Xuefeng & Yang, Jun, 2020. "Reliability analysis of composite insulators subject to multiple dependent competing failure processes with shock duration and shock damage self-recovery," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    4. Li, Xiang-Yu & Xiong, Xiaoyan & Guo, Junyu & Huang, Hong-Zhong & Li, Xiaopeng, 2022. "Reliability assessment of non-repairable multi-state phased mission systems with backup missions," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    5. Zhao, Xian & Guo, Xiaoxin & Wang, Xiaoyue, 2018. "Reliability and maintenance policies for a two-stage shock model with self-healing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 185-194.
    6. Zhi‐Sheng Ye & Min Xie, 2015. "Rejoinder to ‘Stochastic modelling and analysis of degradation for highly reliable products’," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(1), pages 35-36, January.
    7. Finkelstein, Maxim & Marais, Francois, 2010. "On terminating Poisson processes in some shock models," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 874-879.
    8. Gao, Hongda & Cui, Lirong & Qiu, Qingan, 2019. "Reliability modeling for degradation-shock dependence systems with multiple species of shocks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 133-143.
    9. Ji Hwan Cha & Maxim Finkelstein, 2018. "Point Processes for Reliability Analysis," Springer Series in Reliability Engineering, Springer, number 978-3-319-73540-5, March.
    10. Ji Cha & Maxim Finkelstein, 2015. "A dynamic stress–strength model with stochastically decreasing strength," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(7), pages 807-827, October.
    11. Meango, Toualith Jean-Marc & Ouali, Mohamed-Salah, 2020. "Failure interaction model based on extreme shock and Markov processes," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    12. Wu, Bei & Cui, Lirong, 2020. "Reliability evaluation of Markov renewal shock models with multiple failure mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    13. Shamstabar, Yousof & Shahriari, Hamid & Samimi, Yaser, 2021. "Reliability monitoring of systems with cumulative shock-based deterioration process," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    14. Zhi‐Sheng Ye & Min Xie, 2015. "Stochastic modelling and analysis of degradation for highly reliable products," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(1), pages 16-32, January.
    15. Zhang, Xiaoqiang & Gao, Huiying & Huang, Hong-Zhong & Li, Yan-Feng & Mi, Jinhua, 2018. "Dynamic reliability modeling for system analysis under complex load," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 345-351.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chadjiconstantinidis, Stathis & Eryilmaz, Serkan, 2024. "On δ-shock model with a change point in intershock time distribution," Statistics & Probability Letters, Elsevier, vol. 208(C).
    2. Eryilmaz, Serkan & Unlu, Kamil Demirberk, 2023. "A new generalized δ-shock model and its application to 1-out-of-(m+1):G cold standby system," Reliability Engineering and System Safety, Elsevier, vol. 234(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Fuqiang & Li, Hao & Cheng, Yuanyuan & Liao, Haitao, 2021. "Reliability analysis for a system experiencing dependent degradation processes and random shocks based on a nonlinear Wiener process model," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Jiang, Shan & Jia, Xujie, 2024. "Reliability assessment under continuous fatigue degradation and shock based on Markov renewal process," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    3. Kang, Fengming & Cui, Lirong & Ye, Zhisheng & Zhou, Yu, 2024. "Reliability analysis for systems with self-healing mechanism in degradation-shock dependence processes with changing degradation rate," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    4. Wang, Xiaolin & Liu, Bin & Zhao, Xiujie, 2021. "A performance-based warranty for products subject to competing hard and soft failures," International Journal of Production Economics, Elsevier, vol. 233(C).
    5. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank PA & Coolen-Maturi, Tahani, 2023. "New reliability model for complex systems based on stochastic processes and survival signature," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1349-1364.
    6. Cha, Ji Hwan & Finkelstein, Maxim, 2019. "Stochastic modeling for systems with delayed failures," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 118-124.
    7. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2021. "Optimal shock-driven switching strategies with elements reuse in heterogeneous warm-standby systems," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    8. Wu, Bei & Zhang, Yamei & Zhao, Songzheng, 2023. "Modeling coupled effects of dynamic environments and zoned shocks on systems under dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    9. Liu, Bin & Zhao, Xiujie & Liu, Guoquan & Liu, Yiqi, 2020. "Life cycle cost analysis considering multiple dependent degradation processes and environmental influence," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    10. Kong, Xuefeng & Yang, Jun, 2020. "Reliability analysis of composite insulators subject to multiple dependent competing failure processes with shock duration and shock damage self-recovery," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    11. Dong, Wenjie & Liu, Sifeng & Bae, Suk Joo & Cao, Yingsai, 2021. "Reliability modelling for multi-component systems subject to stochastic deterioration and generalized cumulative shock damages," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    12. Kong, Xuefeng & Yang, Jun & Hao, Songhua, 2021. "Reliability modeling-based tolerance design and process parameter analysis considering performance degradation," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    13. Gao, Hongda & Cui, Lirong & Dong, Qinglai, 2020. "Reliability modeling for a two-phase degradation system with a change point based on a Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    14. Hu, Jiawen & Shen, Jingyuan & Shen, Lijuan, 2020. "Opportunistic maintenance for two-component series systems subject to dependent degradation and shock," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    15. Song, Kai & Shi, Jian & Yi, Xiaojian, 2020. "A time-discrete and zero-adjusted gamma process model with application to degradation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    16. Zhang, Ao & Wang, Zhihua & Bao, Rui & Liu, Chengrui & Wu, Qiong & Cao, Shihao, 2023. "A novel failure time estimation method for degradation analysis based on general nonlinear Wiener processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    17. Hui Chen & Jie Chen & Yangyang Lai & Xiaoqi Yu & Lijun Shang & Rui Peng & Baoliang Liu, 2024. "Discrete Random Renewable Replacements after the Expiration of Collaborative Preventive Maintenance Warranty," Mathematics, MDPI, vol. 12(18), pages 1-21, September.
    18. Sun, Fuqiang & Fu, Fangyou & Liao, Haitao & Xu, Dan, 2020. "Analysis of multivariate dependent accelerated degradation data using a random-effect general Wiener process and D-vine Copula," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    19. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    20. Xu, Qinqin & Zhu, Yuanguo, 2022. "Reliability modeling of uncertain random fractional differential systems with competitive failures," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:229:y:2023:i:c:s0951832022004550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.