IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v234y2020i6p735-747.html
   My bibliography  Save this article

A data-driven approach for the health prognosis of high-speed train wheels

Author

Listed:
  • Zhexiang Chi
  • Taotao Zhou
  • Simin Huang
  • Yan-Fu Li

Abstract

Polygonal wear is one of the most critical failure modes of high-speed train wheels that would significantly compromise the safety and reliability of high-speed train operation. However, the mechanism underpinning wheel polygon is complex and still not fully understood, which makes it challenging to track its evolution of the polygonal wheel. The large amount of data gathered through regular inspection and maintenance of Chinese high-speed trains provides a promising way to tackle this challenge with data-driven methods. This article proposes a data-driven approach to predict the degree of the polygonal wear, assess the reliability of individual wheels and the health index of all wheels of a high-speed train for maintenance priority ranking. The synthetic minority over-sampling technique—nominal continuous is adopted to augment the maintenance dataset of imbalanced and mixed features. The autoencoder is used to learn abstract features to represent the original datasets, which are then fed into a support vector machine classifier. The approach is coherently optimized by tuning the model hyper-parameters based on Bayesian optimization. The effectiveness of our proposed approach is demonstrated by the wheel maintenance data obtained from the year 2016 to 2017. The results can also be used to support practical maintenance priority allocation.

Suggested Citation

  • Zhexiang Chi & Taotao Zhou & Simin Huang & Yan-Fu Li, 2020. "A data-driven approach for the health prognosis of high-speed train wheels," Journal of Risk and Reliability, , vol. 234(6), pages 735-747, December.
  • Handle: RePEc:sae:risrel:v:234:y:2020:i:6:p:735-747
    DOI: 10.1177/1748006X20929158
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X20929158
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X20929158?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dai, Xinliang & Qu, Sheng & Sui, Hao & Wu, Pingbo, 2022. "Reliability modelling of wheel wear deterioration using conditional bivariate gamma processes and Bayesian hierarchical models," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Yuanchen Zeng & Dongli Song & Weihua Zhang & Bin Zhou & Mingyuan Xie & Xiaoyue Qi, 2021. "Risk assessment of wheel polygonization on high-speed trains based on Bayesian networks," Journal of Risk and Reliability, , vol. 235(2), pages 182-192, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:234:y:2020:i:6:p:735-747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.