IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v163y2017icp79-94.html
   My bibliography  Save this article

Quantifying the resilience of an urban traffic-electric power coupled system

Author

Listed:
  • Fotouhi, Hossein
  • Moryadee, Seksun
  • Miller-Hooks, Elise

Abstract

Transportation system resilience has been the subject of several recent studies. To assess the resilience of a transportation network, however, it is essential to model its interactions with and reliance on other lifelines. Prior works might consider these interactions implicitly, perhaps in the form of hazard impact scenarios wherein services from a second lifeline (e.g. power) are precluded due to a hazard event. In this paper, a bi-level, mixed-integer, stochastic program is presented for quantifying the resilience of a coupled traffic-power network under a host of potential natural or anthropogenic hazard-impact scenarios. A two-layer network representation is employed that includes details of both systems. Interdependencies between the urban traffic and electric power distribution systems are captured through linking variables and logical constraints. The modeling approach was applied on a case study developed on a portion of the signalized traffic-power distribution system in southern Minneapolis. The results of the case study show the importance of explicitly considering interdependencies between critical infrastructures in transportation resilience estimation. The results also provide insights on lifeline performance from an alternate power perspective.

Suggested Citation

  • Fotouhi, Hossein & Moryadee, Seksun & Miller-Hooks, Elise, 2017. "Quantifying the resilience of an urban traffic-electric power coupled system," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 79-94.
  • Handle: RePEc:eee:reensy:v:163:y:2017:i:c:p:79-94
    DOI: 10.1016/j.ress.2017.01.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016300710
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.01.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Pengcheng & Peeta, Srinivas, 2011. "A generalized modeling framework to analyze interdependencies among infrastructure systems," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 553-579, March.
    2. Sharkey, Thomas C. & Cavdaroglu, Burak & Nguyen, Huy & Holman, Jonathan & Mitchell, John E. & Wallace, William A., 2015. "Interdependent network restoration: On the value of information-sharing," European Journal of Operational Research, Elsevier, vol. 244(1), pages 309-321.
    3. Johansson, Jonas & Hassel, Henrik, 2010. "An approach for modelling interdependent infrastructures in the context of vulnerability analysis," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1335-1344.
    4. Zhang, Jianhua & Song, Bo & Zhang, Zhaojun & Liu, Haikuan, 2014. "An approach for modeling vulnerability of the network of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 127-136.
    5. Faturechi, Reza & Miller-Hooks, Elise, 2014. "Travel time resilience of roadway networks under disaster," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 47-64.
    6. Nicky J. Welton & Howard H. Z. Thom, 2015. "Value of Information," Medical Decision Making, , vol. 35(5), pages 564-566, July.
    7. Larsson, Torbjörn & Patriksson, Michael, 1995. "An augmented lagrangean dual algorithm for link capacity side constrained traffic assignment problems," Transportation Research Part B: Methodological, Elsevier, vol. 29(6), pages 433-455, December.
    8. John E. Bigger & Michael G. Willingham & Frederick Krimgold & Lamine Mili, 2009. "Consequences of critical infrastructure interdependencies: lessons from the 2004 hurricane season in Florida," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 5(3), pages 199-219.
    9. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    10. Yoshio Kajitani & Shigeo Sagai, 2009. "Modelling the interdependencies of critical infrastructures during natural disasters: a case of supply, communication and transportation infrastructures," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 5(1/2), pages 38-50.
    11. Burak Cavdaroglu & Erik Hammel & John Mitchell & Thomas Sharkey & William Wallace, 2013. "Integrating restoration and scheduling decisions for disrupted interdependent infrastructure systems," Annals of Operations Research, Springer, vol. 203(1), pages 279-294, March.
    12. Wang, David Z.W. & Lo, Hong K., 2010. "Global optimum of the linearized network design problem with equilibrium flows," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 482-492, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    2. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    3. Ouyang, Min & Pan, ZheZhe & Hong, Liu & He, Yue, 2015. "Vulnerability analysis of complementary transportation systems with applications to railway and airline systems in China," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 248-257.
    4. Goldbeck, Nils & Angeloudis, Panagiotis & Ochieng, Washington Y., 2019. "Resilience assessment for interdependent urban infrastructure systems using dynamic network flow models," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 62-79.
    5. Quan Mao & Nan Li, 2018. "Assessment of the impact of interdependencies on the resilience of networked critical infrastructure systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 315-337, August.
    6. Allison C. Reilly & Andrew Samuel & Seth D. Guikema, 2015. "“Gaming the System”: Decision Making by Interdependent Critical Infrastructure," Decision Analysis, INFORMS, vol. 12(4), pages 155-172, December.
    7. Reilly, Allison C. & Baroud, Hiba & Flage, Roger & Gerst, Michael D., 2021. "Sources of uncertainty in interdependent infrastructure and their implications," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    8. Garay-Sianca, Aniela & Nurre Pinkley, Sarah G., 2021. "Interdependent integrated network design and scheduling problems with movement of machines," European Journal of Operational Research, Elsevier, vol. 289(1), pages 297-327.
    9. Eren Atsiz & Burcu Balcik & Dilek Gunnec & Busra Uydasoglu Sevindik, 2022. "A coordinated repair routing problem for post-disaster recovery of interdependent infrastructure networks," Annals of Operations Research, Springer, vol. 319(1), pages 41-71, December.
    10. Yasser Almoghathawi & Andrés D. González & Kash Barker, 2021. "Exploring Recovery Strategies for Optimal Interdependent Infrastructure Network Resilience," Networks and Spatial Economics, Springer, vol. 21(1), pages 229-260, March.
    11. Quan Mao & Yuechen Liu, 2024. "Post-Disaster Performance and Restoration Sequences of Interdependent Critical Infrastructure Systems Considering Various Socioeconomic Impacts," Sustainability, MDPI, vol. 16(15), pages 1-18, August.
    12. Xu, Peng-Cheng & Lu, Qing-Chang & Xie, Chi & Cheong, Taesu, 2024. "Modeling the resilience of interdependent networks: The role of function dependency in metro and bus systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    13. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    14. Alkhaleel, Basem A., 2024. "Machine learning applications in the resilience of interdependent critical infrastructure systems—A systematic literature review," International Journal of Critical Infrastructure Protection, Elsevier, vol. 44(C).
    15. Almoghathawi, Yasser & Barker, Kash & Albert, Laura A., 2019. "Resilience-driven restoration model for interdependent infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 12-23.
    16. Thomas J. Wilbanks & Rae Zimmerman & Susan Julius & Paul Kirshen & Joel B. Smith & Richard Moss & William Solecki & Matthias Ruth & Stephen Conrad & Steven J. Fernandez & Michael S. Matthews & Michael, 2020. "Toward indicators of the performance of US infrastructures under climate change risks," Climatic Change, Springer, vol. 163(4), pages 1795-1813, December.
    17. Dong, Shangjia & Wang, Haizhong & Mostafizi, Alireza & Song, Xuan, 2020. "A network-of-networks percolation analysis of cascading failures in spatially co-located road-sewer infrastructure networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    18. Liu, Wei & Song, Zhaoyang, 2020. "Review of studies on the resilience of urban critical infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    19. Sharma, Neetesh & Gardoni, Paolo, 2022. "Mathematical modeling of interdependent infrastructure: An object-oriented approach for generalized network-system analysis," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    20. Chao Fang & Piao Dong & Yi-Ping Fang & Enrico Zio, 2020. "Vulnerability analysis of critical infrastructure under disruptions: An application to China Railway High-speed," Journal of Risk and Reliability, , vol. 234(2), pages 235-245, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:163:y:2017:i:c:p:79-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.