IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v221y2022ics0951832022000060.html
   My bibliography  Save this article

Predicting human reliability based on probabilistic mission completion time using Bayesian Network

Author

Listed:
  • Asadayoobi, N.
  • Taghipour, S.
  • Jaber, M.Y.

Abstract

This study considers the characteristics of a worker performing a sequence of tasks in a mission by developing a Bayesian Network model to predict reliability and mission completion time, the two measures of overall performance. The mission is broken down into tasks of different types, some of which may not be repeated back-to-back. A orker's initial task performance, learning, fatigue, and stress are the factors that affect the overall performance, and they vary by worker and task type'. Those characteristics and the task sequence plan are incorporated into a Bayesian Network to measure the performance of each task and, subsequently, the mission. Taking the task sequence plan into account adds a new dimension to the Bayesian Network as it counts the number of repetitions performed for each type of task, which allows linking the performance, learning, fatigue, and stress levels of a preceding task to a succeeding one. The developed model is general and can be applied to different real-life settings that are stressful and labour intensive. A numerical analysis is conducted to study how a worker's characteristics affect her/his reliability and the mission duration. The results are discussed, and managerial insights are presented.

Suggested Citation

  • Asadayoobi, N. & Taghipour, S. & Jaber, M.Y., 2022. "Predicting human reliability based on probabilistic mission completion time using Bayesian Network," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:reensy:v:221:y:2022:i:c:s0951832022000060
    DOI: 10.1016/j.ress.2022.108324
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022000060
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108324?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Greco, Salvatore F. & Podofillini, Luca & Dang, Vinh N., 2021. "A Bayesian model to treat within-category and crew-to-crew variability in simulator data for Human Reliability Analysis," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    2. Jaber, M. Y. & Peltokorpi, J. & Glock, C. H. & Grosse, E. H. & Pusic, M., 2021. "Adjustment for cognitive interference enhances the predictability of the power learning curve," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 125295, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    3. Lauritzen, Steffen L., 1995. "The EM algorithm for graphical association models with missing data," Computational Statistics & Data Analysis, Elsevier, vol. 19(2), pages 191-201, February.
    4. Scott M. Shafer & David A. Nembhard & Mustafa V. Uzumeri, 2001. "The Effects of Worker Learning, Forgetting, and Heterogeneity on Assembly Line Productivity," Management Science, INFORMS, vol. 47(12), pages 1639-1653, December.
    5. Martins, Marcelo Ramos & Maturana, Marcos Coelho, 2013. "Application of Bayesian Belief networks to the human reliability analysis of an oil tanker operation focusing on collision accidents," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 89-109.
    6. Kim, Man Cheol & Seong, Poong Hyun & Hollnagel, Erik, 2006. "A probabilistic approach for determining the control mode in CREAM," Reliability Engineering and System Safety, Elsevier, vol. 91(2), pages 191-199.
    7. Mkrtchyan, L. & Podofillini, L. & Dang, V.N., 2015. "Bayesian belief networks for human reliability analysis: A review of applications and gaps," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 1-16.
    8. Cavagnini, Rossana & Hewitt, Mike & Maggioni, Francesca, 2020. "Workforce production planning under uncertain learning rates," International Journal of Production Economics, Elsevier, vol. 225(C).
    9. Nasr, Walid W. & Jaber, Mohamad Y., 2019. "Supplier development in a two-level lot sizing problem with non-conforming items and learning," International Journal of Production Economics, Elsevier, vol. 216(C), pages 349-363.
    10. Abrishami, Shokoufeh & Khakzad, Nima & Hosseini, Seyed Mahmoud, 2020. "A data-based comparison of BN-HRA models in assessing human error probability: An offshore evacuation case study," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    11. He, Ye & Kuai, Nian-Sheng & Deng, Li-Min & He, Xiong-Yuan, 2021. "A method for assessing Human Error Probability through physiological and psychological factors tests based on CREAM and its applications," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    12. Glock, C.H. & Grosse, E.H. & Kim, T. & Neumann, W.P. & Sobhani, A., 2019. "An integrated cost and worker fatigue evaluation model of a packaging process," International Journal of Production Economics, Elsevier, vol. 207(C), pages 107-124.
    13. Kim, Yochan & Park, Jinkyun & Presley, Mary, 2021. "Selecting significant contextual factors and estimating their effects on operator reliability in computer-based control rooms," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    14. Liu, Jianqiao & Zou, Yanhua & Wang, Wei & Zhang, Li & Liu, Xueyang & Ding, Qianqiao & Qin, Zhuomin & ÄŒepin, Marko, 2021. "Analysis of dependencies among performance shaping factors in human reliability analysis based on a system dynamics approach," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    15. Groth, Katrina M. & Smith, Reuel & Moradi, Ramin, 2019. "A hybrid algorithm for developing third generation HRA methods using simulator data, causal models, and cognitive science," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    16. Abrishami, Shokoufeh & Khakzad, Nima & Hosseini, Seyed Mahmoud & van Gelder, Pieter, 2020. "BN-SLIM: A Bayesian Network methodology for human reliability assessment based on Success Likelihood Index Method (SLIM)," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    17. Jaber, M.Y. & Peltokorpi, J. & Glock, C.H. & Grosse, E.H. & Pusic, M., 2021. "Adjustment for cognitive interference enhances the predictability of the power learning curve," International Journal of Production Economics, Elsevier, vol. 234(C).
    18. Zhao, Yunfei & Smidts, Carol, 2021. "CMS-BN: A cognitive modeling and simulation environment for human performance assessment, part 1 — methodology," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    19. Ham, Dong-Han & Jung, Won-Jun & Park, Jinkyun, 2021. "Identifying key factors affecting the performance of team decision-making based on the analysis of investigation reports issued from diverse industries," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    20. Glock, C. H. & Grosse, E. H. & Kim, T. & Neumann, W. P. & Sobhani, A., 2019. "An integrated cost and worker fatigue evaluation model of a packaging process," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 107269, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiao, Yidan & Gao, Xinwei & Ma, Lin & Chen, Dengkai, 2024. "Dynamic human error risk assessment of group decision-making in extreme cooperative scenario," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    2. Yu, Yaocheng & Shuai, Bin & Huang, Wencheng, 2024. "Resilience evaluation of train control on-board system considering common cause failure: Based on a beta-factor and continuous-time bayesian network model," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    3. Wang, Fang & Bai, Jie & Liu, Linlin & Ye, Tianyuan, 2024. "Temporal noisy-adder of bayesian network for scalable consecutive-k-out-of-n:F system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    4. Rose, Rodrigo L. & Puranik, Tejas G. & Mavris, Dimitri N. & Rao, Arjun H., 2022. "Application of structural topic modeling to aviation safety data," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    5. Jo, Wooseok & Lee, Seung Jun, 2024. "Human reliability evaluation method covering operator action timing for dynamic probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    6. Zhang, Jinfeng & Jin, Mei & Wan, Chengpeng & Dong, Zhijie & Wu, Xiaohong, 2024. "A Bayesian network-based model for risk modeling and scenario deduction of collision accidents of inland intelligent ships," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    7. Tian-yuan, Ye & Lin-lin, Liu & He-wei, Pang & Yuan-zi, Zhou, 2023. "Bayesian Networks based approach to enhance GO methodology for reliability modeling of multi-state consecutive-k-out-of-n: F system," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    8. Podofillini, Luca & Reer, Bernhard & Dang, Vinh N., 2023. "A traceable process to develop Bayesian networks from scarce data and expert judgment: A human reliability analysis application," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    9. Fan, Shiqi & Yang, Zaili, 2024. "Accident data-driven human fatigue analysis in maritime transport using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    10. Garg, Vipul & Vinod, Gopika & Prasad, Mahendra & Chattopadhyay, J. & Smith, Curtis & Kant, Vivek, 2023. "Human reliability analysis studies from simulator experiments using Bayesian inference," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    11. Wallius, Eetu & Klock, Ana Carolina Tomé & Hamari, Juho, 2022. "Playing it safe: A literature review and research agenda on motivational technologies in transportation safety," Reliability Engineering and System Safety, Elsevier, vol. 223(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Maturana, Marcos Coelho & Martins, Marcelo Ramos & Frutuoso e Melo, Paulo Fernando Ferreira, 2021. "Application of a quantitative human performance model to the operational procedure design of a fuel storage pool cooling system," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Catelani, Marcantonio & Ciani, Lorenzo & Guidi, Giulia & Patrizi, Gabriele, 2021. "An enhanced SHERPA (E-SHERPA) method for human reliability analysis in railway engineering," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Abrishami, Shokoufeh & Khakzad, Nima & Hosseini, Seyed Mahmoud, 2020. "A data-based comparison of BN-HRA models in assessing human error probability: An offshore evacuation case study," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    5. Podofillini, Luca & Reer, Bernhard & Dang, Vinh N., 2021. "Analysis of recent operational events involving inappropriate actions: influencing factors and root causes," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Liu, Jianqiao & Zou, Yanhua & Wang, Wei & Zio, Enrico & Yuan, Chengwei & Wang, Taorui & Jiang, Jianjun, 2022. "A Bayesian belief network framework for nuclear power plant human reliability analysis accounting for dependencies among performance shaping factors," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    7. Ekanem, Nsimah & Mosleh, Ali & Shen, Song-Hua & Ramos, Marilia, 2024. "Phoenix–A model-based human reliability analysis methodology: Data sources and quantitative analysis procedure," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    8. Qiao, Yidan & Zhang, Xian & Wang, Hanyu & Chen, Dengkai, 2024. "Dynamic assessment method for human factor risk of manned deep submergence operation system based on SPAR-H and SD," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    9. Paglioni, Vincent P. & Groth, Katrina M., 2022. "Dependency definitions for quantitative human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    10. Atashfeshan, Nooshin & Saidi-Mehrabad, Mohammad & Razavi, Hamideh, 2021. "A novel dynamic function allocation method in human-machine systems focusing on trigger mechanism and allocation strategy," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    11. Abreu, Danilo T.M.P. & Maturana, Marcos C. & Droguett, Enrique Lopez & Martins, Marcelo R., 2022. "Human reliability analysis of conventional maritime pilotage operations supported by a prospective model," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    12. Morais, Caroline & Estrada-Lugo, Hector Diego & Tolo, Silvia & Jacques, Tiago & Moura, Raphael & Beer, Michael & Patelli, Edoardo, 2022. "Robust data-driven human reliability analysis using credal networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    13. Zhou, Jian-Lan & Lei, Yi, 2020. "A slim integrated with empirical study and network analysis for human error assessment in the railway driving process," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    14. Li, Jue & Li, Heng & Wang, Fan & Cheng, Andy S.K. & Yang, Xincong & Wang, Hongwei, 2021. "Proactive analysis of construction equipment operators’ hazard perception error based on cognitive modeling and a dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    15. Park, Jinkyun, 2024. "A framework to determine the holistic multiplier of performance shaping factors in human reliability analysis – An explanatory study," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    16. Zhou, Jian-Lan & Yu, Ze-Tai & Xiao, Ren-Bin, 2022. "A large-scale group Success Likelihood Index Method to estimate human error probabilities in the railway driving process," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    17. Zhao, Yunfei, 2022. "A Bayesian approach to comparing human reliability analysis methods using human performance data," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    18. Podofillini, Luca & Reer, Bernhard & Dang, Vinh N., 2023. "A traceable process to develop Bayesian networks from scarce data and expert judgment: A human reliability analysis application," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    19. Garg, Vipul & Vinod, Gopika & Prasad, Mahendra & Chattopadhyay, J. & Smith, Curtis & Kant, Vivek, 2023. "Human reliability analysis studies from simulator experiments using Bayesian inference," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    20. Jiuh‐Biing Sheu & Tsan‐Ming Choi, 2023. "Can we work more safely and healthily with robot partners? A human‐friendly robot–human‐coordinated order fulfillment scheme," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 794-812, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:221:y:2022:i:c:s0951832022000060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.