IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v217y2022ics0951832021004841.html
   My bibliography  Save this article

Probability Analysis of Construction Risk based on Noisy-or Gate Bayesian Networks

Author

Listed:
  • Ji, Chenyi
  • Su, Xing
  • Qin, Zhongfu
  • Nawaz, Ahsan

Abstract

During construction risks’ probability assessment, it is challenging to obtain the joint probability distribution (JPD) of target risk systems, because every risk element's probability needs to be determined, known as the curse of dimensionality. This paper introduces a Noisy-or Gate Bayesian Network (NG-BN) model that integrates the Noisy-or Gate (NG) model and the Naive Bayesian Network (NBN) to address the problem. The NBN and the NG model's conditional independence assumptions’ gap is bridged by the Markov property. The proposed model requires only connection probabilities with high availability and reliability as the prior knowledge, thus substantially reduces the dimensionality of risk factors while retaining the ability of JPD reasoning. The model is illustrated and tested by a data analysis of the Zijingang Station construction project of Hangzhou Metro Line 5. The result demonstrates that the NG-BN can effectively accomplish the practical occurrence probability evaluation of construction risks. This study has a theoretical contribution as this model establishes a qualitative examination criterion of the Markov property. The proposed NG-BN performs better than the NBN on dimensionality reduction without diminishing the effectiveness of practical risk probability assessment. Its potential for reliability analysis in other engineering fields awaits further study.

Suggested Citation

  • Ji, Chenyi & Su, Xing & Qin, Zhongfu & Nawaz, Ahsan, 2022. "Probability Analysis of Construction Risk based on Noisy-or Gate Bayesian Networks," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:reensy:v:217:y:2022:i:c:s0951832021004841
    DOI: 10.1016/j.ress.2021.107974
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021004841
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107974?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Fangyu & Wang, Hongwei & Xu, Gangyan & Ji, Hongchang & Ding, Shanlei & Wei, Yongchang, 2020. "Data-driven safety enhancing strategies for risk networks in construction engineering," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    2. Rahman, Md Samsur & Khan, Faisal & Shaikh, Arifusalam & Ahmed, Salim & Imtiaz, Syed, 2020. "A conditional dependence-based marine logistics support risk model," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Ahsan Nawaz & Ahsan Waqar & Syyed Adnan Raheel Shah & Muhammad Sajid & Muhammad Irslan Khalid, 2019. "An Innovative Framework for Risk Management in Construction Projects in Developing Countries: Evidence from Pakistan," Risks, MDPI, vol. 7(1), pages 1-10, February.
    4. Libiao Bai & Kaimin Zhang & Huijing Shi & Min An & Xiao Han, 2020. "Project Portfolio Resource Risk Assessment considering Project Interdependency by the Fuzzy Bayesian Network," Complexity, Hindawi, vol. 2020, pages 1-21, November.
    5. Amrin, Andas & Zarikas, Vasileios & Spitas, Christos, 2018. "Reliability analysis and functional design using Bayesian networks generated automatically by an “Idea Algebra†framework," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 211-225.
    6. Quintanar-Gago, David A. & Nelson, Pamela F. & Díaz-Sánchez, à ngeles & Boldrick, Michael S., 2021. "Assessment of steam turbine blade failure and damage mechanisms using a Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    7. Zheng, Xiaohu & Yao, Wen & Xu, Yingchun & Chen, Xianqi, 2019. "Improved compression inference algorithm for reliability analysis of complex multistate satellite system based on multilevel Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 123-142.
    8. Mkrtchyan, L. & Podofillini, L. & Dang, V.N., 2016. "Methods for building Conditional Probability Tables of Bayesian Belief Networks from limited judgment: An evaluation for Human Reliability Application," Reliability Engineering and System Safety, Elsevier, vol. 151(C), pages 93-112.
    9. Dindar, Serdar & Kaewunruen, Sakdirat & An, Min, 2020. "Bayesian network-based human error reliability assessment of derailments," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    10. Jinfen Zhang & Ângelo P Teixeira & C. Guedes Soares & Xinping Yan & Kezhong Liu, 2016. "Maritime Transportation Risk Assessment of Tianjin Port with Bayesian Belief Networks," Risk Analysis, John Wiley & Sons, vol. 36(6), pages 1171-1187, June.
    11. Hossain, Niamat Ullah Ibne & Nur, Farjana & Hosseini, Seyedmohsen & Jaradat, Raed & Marufuzzaman, Mohammad & Puryear, Stephen M., 2019. "A Bayesian network based approach for modeling and assessing resilience: A case study of a full service deep water port," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 378-396.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiao, Yidan & Gao, Xinwei & Ma, Lin & Chen, Dengkai, 2024. "Dynamic human error risk assessment of group decision-making in extreme cooperative scenario," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    2. Chen, Guohua & Li, Geliang & Xie, Mulin & Xu, Qiming & Zhang, Geng, 2024. "A probabilistic analysis method based on Noisy-OR gate Bayesian network for hydrogen leakage of proton exchange membrane fuel cell," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Fu, Lipeng & Wang, Xueqing & Zhao, Heng & Li, Mengnan, 2022. "Interactions among safety risks in metro deep foundation pit projects: An association rule mining-based modeling framework," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    4. Ballester-Ripoll, Rafael & Leonelli, Manuele, 2022. "Computing Sobol indices in probabilistic graphical models," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    5. Yoshinobu Tamura & Shigeru Yamada, 2022. "Prototype of 3D Reliability Assessment Tool Based on Deep Learning for Edge OSS Computing," Mathematics, MDPI, vol. 10(9), pages 1-20, May.
    6. Hunte, Joshua L. & Neil, Martin & Fenton, Norman E., 2024. "A hybrid Bayesian network for medical device risk assessment and management," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    7. Huo, Xiaosen & Yin, Yuan & Jiao, Liudan & Zhang, Yu, 2024. "A data-driven and knowledge graph-based analysis of the risk hazard coupling mechanism in subway construction accidents," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    8. Shen, Shui-Long & Lin, Song-Shun & Zhou, Annan, 2023. "A cloud model-based approach for risk analysis of excavation system," Reliability Engineering and System Safety, Elsevier, vol. 231(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Jian-Lan & Lei, Yi, 2020. "A slim integrated with empirical study and network analysis for human error assessment in the railway driving process," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    2. Ekanem, Nsimah & Mosleh, Ali & Shen, Song-Hua & Ramos, Marilia, 2024. "Phoenix–A model-based human reliability analysis methodology: Data sources and quantitative analysis procedure," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    3. Ahsan Nawaz & Xing Su & Qaiser Mohi Ud Din & Muhammad Irslan Khalid & Muhammad Bilal & Syyed Adnan Raheel Shah, 2020. "Identification of the H&S (Health and Safety Factors) Involved in Infrastructure Projects in Developing Countries-A Sequential Mixed Method Approach of OLMT-Project," IJERPH, MDPI, vol. 17(2), pages 1-18, January.
    4. Fu, Lipeng & Wang, Xueqing & Zhao, Heng & Li, Mengnan, 2022. "Interactions among safety risks in metro deep foundation pit projects: An association rule mining-based modeling framework," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    5. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    6. Wu, Jiansong & Zhang, Linlin & Bai, Yiping & Reniers, Genserik, 2022. "A safety investment optimization model for power grid enterprises based on System Dynamics and Bayesian network theory," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    7. Morais, Caroline & Estrada-Lugo, Hector Diego & Tolo, Silvia & Jacques, Tiago & Moura, Raphael & Beer, Michael & Patelli, Edoardo, 2022. "Robust data-driven human reliability analysis using credal networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    8. Sezer, Sukru Ilke & Akyuz, Emre & Arslan, Ozcan, 2022. "An extended HEART Dempster–Shafer evidence theory approach to assess human reliability for the gas freeing process on chemical tankers," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    9. Antão, P. & Sun, S. & Teixeira, A.P. & Guedes Soares, C., 2023. "Quantitative assessment of ship collision risk influencing factors from worldwide accident and fleet data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    10. Dindar, Serdar & Kaewunruen, Sakdirat & An, Min, 2022. "A hierarchical Bayesian-based model for hazard analysis of climate effect on failures of railway turnout components," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    11. Li, Huanhuan & Çelik, Cihad & Bashir, Musa & Zou, Lu & Yang, Zaili, 2024. "Incorporation of a global perspective into data-driven analysis of maritime collision accident risk," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    12. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    13. Jang, Inseok & Kim, Yochan & Park, Jinkyun, 2021. "Investigating the Effect of Task Complexity on the Occurrence of Human Errors observed in a Nuclear Power Plant Full-Scope Simulator," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    14. Wang, Wenhao & Wang, Yanhui & Wang, Guangxing & Li, Man & Jia, Limin, 2023. "Identification of the critical accident causative factors in the urban rail transit system by complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    15. Nicholas Thom & Andrew Dawson, 2019. "Sustainable Road Design: Promoting Recycling and Non-Conventional Materials," Sustainability, MDPI, vol. 11(21), pages 1-12, November.
    16. Jason R. W. Merrick & Claire A. Dorsey & Bo Wang & Martha Grabowski & John R. Harrald, 2022. "Measuring Prediction Accuracy in a Maritime Accident Warning System," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 819-827, February.
    17. Wang, Shuaian & Yan, Ran & Qu, Xiaobo, 2019. "Development of a non-parametric classifier: Effective identification, algorithm, and applications in port state control for maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 129-157.
    18. Cai, Mingyou & Zhang, Jinfen & Zhang, Di & Yuan, Xiaoli & Soares, C. Guedes, 2021. "Collision risk analysis on ferry ships in Jiangsu Section of the Yangtze River based on AIS data," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    19. Li, Huanhuan & Ren, Xujie & Yang, Zaili, 2023. "Data-driven Bayesian network for risk analysis of global maritime accidents," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    20. Wang, Likun & Yang, Zaili, 2018. "Bayesian network modelling and analysis of accident severity in waterborne transportation: A case study in China," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 277-289.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:217:y:2022:i:c:s0951832021004841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.