IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i19p5108-d422453.html
   My bibliography  Save this article

Probabilistic Availability Analysis for Marine Energy Transfer Subsystem Using Bayesian Network

Author

Listed:
  • Yi Yang

    (Department of The Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg Øst, Denmark)

  • John Dalsgaard Sørensen

    (Department of The Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg Øst, Denmark)

Abstract

This research work proposes a novel approach to estimate probabilities of availability states of the energy transfer network in marine energy conversion subsystems, using Bayesian Networks (BNs). The logical interrelationships between units at different level in this network can be understood through qualitative system analysis, which then can be modeled by the fault tree (FT). The FT can be mapped to a corresponding BN, and the condition probabilities of nodes can be determined based on the logic structure. A case study was performed to demonstrate how the mapping is implemented, and the probabilities of availability states were estimated. The results give the probability of each availability state as a function of time, which serves as a basis for choosing the optimal design solution.

Suggested Citation

  • Yi Yang & John Dalsgaard Sørensen, 2020. "Probabilistic Availability Analysis for Marine Energy Transfer Subsystem Using Bayesian Network," Energies, MDPI, vol. 13(19), pages 1-27, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5108-:d:422453
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/19/5108/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/19/5108/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2011. "Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 925-932.
    2. Wu, Xianguo & Liu, Huitao & Zhang, Limao & Skibniewski, Miroslaw J. & Deng, Qianli & Teng, Jiaying, 2015. "A dynamic Bayesian network based approach to safety decision support in tunnel construction," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 157-168.
    3. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    4. Lei Jiang & Yiliu Liu & Xiaomin Wang & Mary Ann Lundteigen, 2019. "Operation-oriented reliability and availability evaluation for onboard high-speed train control system with dynamic Bayesian network," Journal of Risk and Reliability, , vol. 233(3), pages 455-469, June.
    5. Kwang Pil Chang & Daejun Chang & Enrico Zio, 2010. "Application of Monte Carlo Simulation for the Estimation of Production Availability in Offshore Installations," Springer Series in Reliability Engineering, in: Javier Faulin & Angel A. Juan & Sebastián Martorell & José-Emmanuel Ramírez-Márquez (ed.), Simulation Methods for Reliability and Availability of Complex Systems, chapter 0, pages 233-252, Springer.
    6. Amin, Md. Tanjin & Khan, Faisal & Imtiaz, Syed, 2018. "Dynamic availability assessment of safety critical systems using a dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 108-117.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitri V. Val, 2023. "Reliability of Marine Energy Converters," Energies, MDPI, vol. 16(8), pages 1-4, April.
    2. Yi Yang & Jannie Sønderkær Nielsen, 2021. "Availability-Based Selection of Electricity Delivery Network in Marine Conversion Systems Using Bayesian Network," Energies, MDPI, vol. 14(12), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Qingjun & Amin, Shohel & Hao, Qianwen & Haas, Olivier, 2020. "Resilience assessment of safety system at subway construction sites applying analytic network process and extension cloud models," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    2. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C. & Ariffin, A.K. & Singh, S.S., 2021. "Evidence based risk analysis of fire and explosion accident scenarios in FPSOs," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Guo, Jian & Ma, Kaijiang, 2024. "Risk analysis for hazardous chemical vehicle-bridge transportation system: A dynamic Bayesian network model incorporating vehicle dynamics," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    4. Zhou, Ying & Li, Chenshuang & Ding, Lieyun & Sekula, Przemyslaw & Love, Peter E.D. & Zhou, Cheng, 2019. "Combining association rules mining with complex networks to monitor coupled risks," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 194-208.
    5. Mi, Jinhua & Li, Yan-Feng & Yang, Yuan-Jian & Peng, Weiwen & Huang, Hong-Zhong, 2016. "Reliability assessment of complex electromechanical systems under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 1-15.
    6. Lewis, Austin D. & Groth, Katrina M., 2023. "A comparison of DBN model performance in SIPPRA health monitoring based on different data stream discretization methods," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    7. Özgür-Ünlüakın, Demet & Türkali, Busenur & Karacaörenli, Ayşe & Çağlar Aksezer, S., 2019. "A DBN based reactive maintenance model for a complex system in thermal power plants," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    8. KIM, Junyung & ZHAO, Xingang & SHAH, Asad Ullah Amin & KANG, Hyun Gook, 2021. "System risk quantification and decision making support using functional modeling and dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C., 2022. "Bayesian framework for reliability prediction of subsea processing systems accounting for influencing factors uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    10. Zhang, Haoyuan & Marsh, D. William R, 2021. "Managing infrastructure asset: Bayesian networks for inspection and maintenance decisions reasoning and planning," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    11. Chai, Naijie & Zhou, Wenliang & Hu, Xinlei, 2022. "Safety evaluation of urban rail transit operation considering uncertainty and risk preference: A case study in China," Transport Policy, Elsevier, vol. 125(C), pages 267-288.
    12. Chen, Jing & Wen, Hongjie & Wang, Yongxue & Ren, Bing, 2020. "Experimental investigation of an annular sector OWC device incorporated into a dual cylindrical caisson breakwater," Energy, Elsevier, vol. 211(C).
    13. Cheng, Yong & Song, Fukai & Fu, Lei & Dai, Saishuai & Zhiming Yuan, & Incecik, Atilla, 2024. "Experimental investigation of a dual-pontoon WEC-type breakwater with a hydraulic-pneumatic complementary power take-off system," Energy, Elsevier, vol. 286(C).
    14. Park, Jae-Hyun, 2017. "Time-dependent reliability of wireless networks with dependent failures," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 47-61.
    15. Pan, Yue & Ou, Shenwei & Zhang, Limao & Zhang, Wenjing & Wu, Xianguo & Li, Heng, 2019. "Modeling risks in dependent systems: A Copula-Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 416-431.
    16. Jahangir, Mohammad Hossein & Hosseini, Seyed Sina & Mehrpooya, Mehdi, 2018. "A detailed theoretical modeling and parametric investigation of potential power in heaving buoys," Energy, Elsevier, vol. 154(C), pages 201-209.
    17. Peng, Wei & Zhang, Yingnan & Zou, Qingping & Zhang, Jisheng & Li, Haoran, 2024. "Effect of varying PTO on a triple floater wave energy converter-breakwater hybrid system: An experimental study," Renewable Energy, Elsevier, vol. 224(C).
    18. Pengxia Zhao & Tie Li & Biao Wang & Ming Li & Yu Wang & Xiahui Guo & Yue Yu, 2022. "The Scenario Construction and Evolution Method of Casualties in Liquid Ammonia Leakage Based on Bayesian Network," IJERPH, MDPI, vol. 19(24), pages 1-22, December.
    19. Li, Mei & Liu, Zixian & Li, Xiaopeng & Liu, Yiliu, 2019. "Dynamic risk assessment in healthcare based on Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 327-334.
    20. Hassan, Shamsu & Wang, Jin & Kontovas, Christos & Bashir, Musa, 2022. "An assessment of causes and failure likelihood of cross-country pipelines under uncertainty using bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5108-:d:422453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.