IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v204y2020ics0951832020305846.html
   My bibliography  Save this article

Metamodeling methods that incorporate qualitative variables for improved design of vegetative filter strips

Author

Listed:
  • Lauvernet, Claire
  • Helbert, Céline

Abstract

Significant amounts of pollutant are measured in surface water, their presence due in part to the use of pesticides in agriculture. One solution to limit pesticide transfer by surface runoff is to implement vegetative filter strips. The sizing of VFSs is a major issue, with influencing factors that include local conditions (climate, soil, vegetation). The BUVARD modeling toolkit was developed to design VFSs throughout France according to these properties. This toolkit includes the numerical model VFSMOD, which quantifies dynamic effects of VFS on site-specific pesticide mitigation efficiency. In this paper, a metamodeling, or model dimension reduction, approach is proposed to ease the use of BUVARD and to help users design VFSs that are adapted to specific contexts. Three different reduced models, or surrogates, are compared: a linear model, GAM, and kriging. It is shown that kriging, implemented with a covariance kernel for a mixture of qualitative and quantitative inputs, outperforms the other metamodels. The metamodel is a way of providing a relevant first approximation to help design the pollution reduction device. In addition, it is a relevant tool to visualize the impact that lack of knowledge of some field parameters can have when performing pollution risk analysis and management.

Suggested Citation

  • Lauvernet, Claire & Helbert, Céline, 2020. "Metamodeling methods that incorporate qualitative variables for improved design of vegetative filter strips," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:reensy:v:204:y:2020:i:c:s0951832020305846
    DOI: 10.1016/j.ress.2020.107083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832020305846
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Janis Janusevskis & Rodolphe Le Riche, 2013. "Simultaneous kriging-based estimation and optimization of mean response," Journal of Global Optimization, Springer, vol. 55(2), pages 313-336, February.
    2. Roustant, Olivier & Ginsbourger, David & Deville, Yves, 2012. "DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i01).
    3. Dupuy, Delphine & Helbert, Céline & Franco, Jessica, 2015. "DiceDesign and DiceEval: Two R Packages for Design and Analysis of Computer Experiments," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 65(i11).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Zeng & Xuxue Sun & Kuo Wang & Yuxin Wen & Wujun Si & Mingyang Li, 2024. "A Bayesian Approach for Lifetime Modeling and Prediction with Multi-Type Group-Shared Missing Covariates," Mathematics, MDPI, vol. 12(5), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torossian, Léonard & Picheny, Victor & Faivre, Robert & Garivier, Aurélien, 2020. "A review on quantile regression for stochastic computer experiments," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    2. Ribaud, Mélina & Blanchet-Scalliet, Christophette & Helbert, Céline & Gillot, Frédéric, 2020. "Robust optimization: A kriging-based multi-objective optimization approach," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    3. G. Dosi & M. C. Pereira & M. E. Virgillito, 2018. "On the robustness of the fat-tailed distribution of firm growth rates: a global sensitivity analysis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(1), pages 173-193, April.
    4. Ehsan Mehdad & Jack P. C. Kleijnen, 2018. "Efficient global optimisation for black-box simulation via sequential intrinsic Kriging," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(11), pages 1725-1737, November.
    5. Diariétou Sambakhé & Lauriane Rouan & Jean-Noël Bacro & Eric Gozé, 2019. "Conditional optimization of a noisy function using a kriging metamodel," Journal of Global Optimization, Springer, vol. 73(3), pages 615-636, March.
    6. Biewen, Martin & Kugler, Philipp, 2021. "Two-stage least squares random forests with an application to Angrist and Evans (1998)," Economics Letters, Elsevier, vol. 204(C).
    7. Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
    8. Olgun Aydin & Bartłomiej Igliński & Krzysztof Krukowski & Marek Siemiński, 2022. "Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland," Energies, MDPI, vol. 15(9), pages 1-22, April.
    9. Kleijnen, Jack P.C. & Mehdad, Ehsan, 2014. "Multivariate versus univariate Kriging metamodels for multi-response simulation models," European Journal of Operational Research, Elsevier, vol. 236(2), pages 573-582.
    10. Erickson, Collin B. & Ankenman, Bruce E. & Sanchez, Susan M., 2018. "Comparison of Gaussian process modeling software," European Journal of Operational Research, Elsevier, vol. 266(1), pages 179-192.
    11. Rivier, M. & Congedo, P.M., 2022. "Surrogate-Assisted Bounding-Box approach applied to constrained multi-objective optimisation under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    12. Mehdad, E. & Kleijnen, Jack P.C., 2014. "Global Optimization for Black-box Simulation via Sequential Intrinsic Kriging," Other publications TiSEM 8fa8d96f-a086-4c4b-88ab-9, Tilburg University, School of Economics and Management.
    13. Leonardo Bargigli & Luca Riccetti & Alberto Russo & Mauro Gallegati, 2020. "Network calibration and metamodeling of a financial accelerator agent based model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(2), pages 413-440, April.
    14. Victor Picheny & Mickael Binois & Abderrahmane Habbal, 2019. "A Bayesian optimization approach to find Nash equilibria," Journal of Global Optimization, Springer, vol. 73(1), pages 171-192, January.
    15. Binois, M. & Ginsbourger, D. & Roustant, O., 2015. "Quantifying uncertainty on Pareto fronts with Gaussian process conditional simulations," European Journal of Operational Research, Elsevier, vol. 243(2), pages 386-394.
    16. Kleijnen, Jack P.C. & Mehdad, E. & van Beers, W.C.M., 2012. "Convex and monotonic bootstrapped kriging," Other publications TiSEM 972e079d-0209-45bf-b25e-a, Tilburg University, School of Economics and Management.
    17. Kamiński, Bogumił, 2015. "A method for the updating of stochastic kriging metamodels," European Journal of Operational Research, Elsevier, vol. 247(3), pages 859-866.
    18. Łukasz Klimkowski, 2024. "An Artificial Neural Network Model for a Comprehensive Assessment of the Production Performance of Multiple Fractured Unconventional Tight Gas Wells," Energies, MDPI, vol. 17(13), pages 1-26, June.
    19. Krityakierne, Tipaluck & Baowan, Duangkamon, 2020. "Aggregated GP-based Optimization for Contaminant Source Localization," Operations Research Perspectives, Elsevier, vol. 7(C).
    20. Li, Peiping & Wang, Yu, 2022. "An active learning reliability analysis method using adaptive Bayesian compressive sensing and Monte Carlo simulation (ABCS-MCS)," Reliability Engineering and System Safety, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:204:y:2020:i:c:s0951832020305846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.