IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v34y2019i4d10.1007_s00180-019-00874-2.html
   My bibliography  Save this article

Four algorithms to construct a sparse kriging kernel for dimensionality reduction

Author

Listed:
  • Christophette Blanchet-Scalliet

    (Univ Lyon)

  • Céline Helbert

    (Univ Lyon)

  • Mélina Ribaud

    (Univ Lyon)

  • Céline Vial

    (Univ Lyon, Université Claude Bernard Lyon 1
    INRIA)

Abstract

In the context of computer experiments, metamodels are largely used to represent the output of computer codes. Among these models, Gaussian process regression (kriging) is very efficient see e.g Snelson (Flexible and efficient Gaussian process models for machine learning. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)–University of London, University College London, London, 2008). In high dimension that is with a large number of input variables, but with few observations, the estimation of the parameters with a classical anisotropic kriging can be completely inaccurate. Because there are equal numbers of ranges and input variables the optimization space becomes too large compared to available information. One way to overcome this drawback is to use an isotropic kernel that only depends on one parameter. However this model is too restrictive. The aim of this paper is twofold. Our first objective is to propose a smooth kernel with as few parameters as warranted. We introduce a kernel which is a tensor product of few isotropic kernels built on well-chosen subgroup of variables. The main difficulty is to find the number and the composition of the groups. Our second objective is to propose algorithmic strategies to overcome this difficulty. Four forward strategies are proposed. They all start with the simplest isotropic kernel and stop when the best model according to BIC criterion is found. They all show very good accuracy results on simulation test cases. But one of them is more efficient. Tested on a real data set, our kernel shows very good prediction results.

Suggested Citation

  • Christophette Blanchet-Scalliet & Céline Helbert & Mélina Ribaud & Céline Vial, 2019. "Four algorithms to construct a sparse kriging kernel for dimensionality reduction," Computational Statistics, Springer, vol. 34(4), pages 1889-1909, December.
  • Handle: RePEc:spr:compst:v:34:y:2019:i:4:d:10.1007_s00180-019-00874-2
    DOI: 10.1007/s00180-019-00874-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-019-00874-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-019-00874-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dupuy, Delphine & Helbert, Céline & Franco, Jessica, 2015. "DiceDesign and DiceEval: Two R Packages for Design and Analysis of Computer Experiments," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 65(i11).
    2. Binois, M. & Ginsbourger, D. & Roustant, O., 2015. "Quantifying uncertainty on Pareto fronts with Gaussian process conditional simulations," European Journal of Operational Research, Elsevier, vol. 243(2), pages 386-394.
    3. Marrel, Amandine & Iooss, Bertrand & Van Dorpe, François & Volkova, Elena, 2008. "An efficient methodology for modeling complex computer codes with Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4731-4744, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Manman & Cheng, Yongbo & Wan, Liangqi, 2024. "A new adaptive multi-kernel relevance vector regression for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Veiga, Sébastien Da & Marrel, Amandine, 2020. "Gaussian process regression with linear inequality constraints," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    2. Rivier, M. & Congedo, P.M., 2022. "Surrogate-Assisted Bounding-Box approach applied to constrained multi-objective optimisation under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Barbillon, Pierre & Celeux, Gilles & Grimaud, Agnès & Lefebvre, Yannick & De Rocquigny, Étienne, 2011. "Nonlinear methods for inverse statistical problems," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 132-142, January.
    4. Touzani, Samir & Busby, Daniel, 2013. "Smoothing spline analysis of variance approach for global sensitivity analysis of computer codes," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 67-81.
    5. Sun, Zhili & Wang, Jian & Li, Rui & Tong, Cao, 2017. "LIF: A new Kriging based learning function and its application to structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 152-165.
    6. Łukasz Klimkowski, 2024. "An Artificial Neural Network Model for a Comprehensive Assessment of the Production Performance of Multiple Fractured Unconventional Tight Gas Wells," Energies, MDPI, vol. 17(13), pages 1-26, June.
    7. Johannes Ziesmer & Ding Jin & Sneha D Thube & Christian Henning, 2023. "A Dynamic Baseline Calibration Procedure for CGE models," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1331-1368, April.
    8. Ribaud, Mélina & Blanchet-Scalliet, Christophette & Helbert, Céline & Gillot, Frédéric, 2020. "Robust optimization: A kriging-based multi-objective optimization approach," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    9. Dawei Zhan & Huanlai Xing, 2020. "Expected improvement for expensive optimization: a review," Journal of Global Optimization, Springer, vol. 78(3), pages 507-544, November.
    10. Radaideh, Majdi I. & Kozlowski, Tomasz, 2020. "Surrogate modeling of advanced computer simulations using deep Gaussian processes," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    11. Peisong Xuanyuan & Yijie Zhang & Jian Yao & Rongyue Zheng, 2024. "Sensitivity Analysis and Optimization of Energy-Saving Measures for Office Building in Hot Summer and Cold Winter Regions," Energies, MDPI, vol. 17(7), pages 1-29, April.
    12. G. Dosi & M. C. Pereira & M. E. Virgillito, 2018. "On the robustness of the fat-tailed distribution of firm growth rates: a global sensitivity analysis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(1), pages 173-193, April.
    13. Chevalier, Clément & Picheny, Victor & Ginsbourger, David, 2014. "KrigInv: An efficient and user-friendly implementation of batch-sequential inversion strategies based on kriging," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1021-1034.
    14. Michael Ludkovski & James Risk, 2017. "Sequential Design and Spatial Modeling for Portfolio Tail Risk Measurement," Papers 1710.05204, arXiv.org, revised May 2018.
    15. Capitanescu, F. & Marvuglia, A. & Benetto, E. & Ahmadi, A. & Tiruta-Barna, L., 2017. "Linear programming-based directed local search for expensive multi-objective optimization problems: Application to drinking water production plants," European Journal of Operational Research, Elsevier, vol. 262(1), pages 322-334.
    16. Kapusuzoglu, Berkcan & Mahadevan, Sankaran, 2021. "Information fusion and machine learning for sensitivity analysis using physics knowledge and experimental data," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    17. Betancourt, José & Bachoc, François & Klein, Thierry & Idier, Déborah & Pedreros, Rodrigo & Rohmer, Jérémy, 2020. "Gaussian process metamodeling of functional-input code for coastal flood hazard assessment," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    18. Lee, Dongjin & Kramer, Boris, 2023. "Multifidelity conditional value-at-risk estimation by dimensionally decomposed generalized polynomial chaos-Kriging," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    19. Marrel, Amandine & Iooss, Bertrand & Laurent, Béatrice & Roustant, Olivier, 2009. "Calculations of Sobol indices for the Gaussian process metamodel," Reliability Engineering and System Safety, Elsevier, vol. 94(3), pages 742-751.
    20. Sridharan, Vamsi Krishna & Jackson, Doug & Hein, Andrew M. & Perry, Russell W. & Pope, Adam C. & Hendrix, Noble & Danner, Eric M. & Lindley, Steven T., 2023. "Simulating the migration dynamics of juvenile salmonids through rivers and estuaries using a hydrodynamically driven enhanced particle tracking model," Ecological Modelling, Elsevier, vol. 482(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:34:y:2019:i:4:d:10.1007_s00180-019-00874-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.