IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v202y2020ics0951832020304932.html
   My bibliography  Save this article

Harmonisation of surveillance requirements and maintenance in a context of ageing and obsolescence based on reliability, availability and risk information

Author

Listed:
  • Martorell, S.
  • Martón, I.
  • Sánchez, A.
  • Carlos, S.

Abstract

This paper contains the fundamentals and a comparison of different alternatives in the context of risk-informed surveillance requirements that consider the full effects of implementing the maintenance rule. A case study is included to demonstrate the performance of the different alternatives, which focus on a motor-operated valve and make use of an Ageing PRA to quantify the effect of component ageing, test and maintenance effectiveness on equipment RAM and its impact on risk. The results show that the alternative that simultaneously harmonises surveillance requirements and maintenance activities provides the best results in terms of RAM and risk in a context of equipment ageing and obsolescence. However, they also show that measures other than simply re-adjusting surveillance testing and maintenance intervals should be explored in case of technical obsolescence, as this has a strong impact on maintenance effectiveness, which may require, for example, an obsolescence management program to be applied.

Suggested Citation

  • Martorell, S. & Martón, I. & Sánchez, A. & Carlos, S., 2020. "Harmonisation of surveillance requirements and maintenance in a context of ageing and obsolescence based on reliability, availability and risk information," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:reensy:v:202:y:2020:i:c:s0951832020304932
    DOI: 10.1016/j.ress.2020.106992
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832020304932
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.106992?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martorell, P. & Martón, I. & Sánchez, A.I. & Martorell, S., 2017. "Unavailability model for demand-caused failures of safety components addressing degradation by demand-induced stress, maintenance effectiveness and test efficiency," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 18-27.
    2. Shin, Sung Min & Jeon, In Seop & Kang, Hyun Gook, 2015. "Surveillance test and monitoring strategy for the availability improvement of standby equipment using age-dependent model," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 100-106.
    3. Martorell, S. & Villamizar, M. & Martón, I. & Villanueva, J.F. & Carlos, S. & Sánchez, A.I., 2014. "Evaluation of risk impact of changes to surveillance requirements addressing model and parameter uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 153-165.
    4. Martón, I. & Martorell, P. & Mullor, R. & Sánchez, A.I. & Martorell, S., 2016. "Optimization of test and maintenance of ageing components consisting of multiple items and addressing effectiveness," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 151-158.
    5. S. Martorell & P. Martorell & A. I. Sánchez & R. Mullor & I. Martón, 2017. "Parameter Estimation of a Reliability Model of Demand-Caused and Standby-Related Failures of Safety Components Exposed to Degradation by Demand Stress and Ageing That Undergo Imperfect Maintenance," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-11, December.
    6. Martorell, S. & Martón, I. & Villamizar, M. & Sánchez, A.I. & Carlos, S., 2014. "Evaluation of risk impact of changes to Completion Times addressing model and parameter uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 190-201.
    7. Martón, I. & Sánchez, A.I. & Martorell, S., 2015. "Ageing PSA incorporating effectiveness of maintenance and testing," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 131-140.
    8. KanÄ ev, DuÅ¡ko & Gjorgiev, Blaže & Volkanovski, Andrija & ÄŒepin, Marko, 2016. "Time-dependent unavailability of equipment in an ageing NPP: Sensitivity study of a developed model," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 11-20.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martón, I. & Sánchez, A.I. & Carlos, S. & Mullor, R. & Martorell, S., 2023. "Prognosis of wear-out effect on of safety equipment reliability for nuclear power plants long-term safe operation," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    2. Thiago Lima de Barros & Rodrigo Sampaio Lopes, 2021. "Continuous improvement of imperfect maintenance actions in PAS and PAR models," Journal of Risk and Reliability, , vol. 235(5), pages 941-958, October.
    3. Martorell, P. & Martón, I. & Sánchez, A.I. & Martorell, S., 2017. "Unavailability model for demand-caused failures of safety components addressing degradation by demand-induced stress, maintenance effectiveness and test efficiency," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 18-27.
    4. Kowal, Karol, 2022. "Lifetime reliability and availability simulation for the electrical system of HTTR coupled to the electricity-hydrogen cogeneration plant," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    5. Martón, I. & Sánchez, A.I. & Martorell, S., 2015. "Ageing PSA incorporating effectiveness of maintenance and testing," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 131-140.
    6. Martorell, P. & Martón, I. & Sánchez, A.I. & Martorell, S. & Sanchez-Saez, F. & Saiz, M., 2018. "Evaluation of risk impact of completion time changes combining PSA and DSA model insight and human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 97-107.
    7. Borysiewicz, Mieczysław & Kowal, Karol & Potempski, Sławomir, 2015. "An application of the value tree analysis methodology within the integrated risk informed decision making for the nuclear facilities," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 113-119.
    8. Srivastav, Himanshu & Lundteigen, Mary Ann & Barros, Anne, 2021. "Introduction of degradation modeling in qualification of the novel subsea technology," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Wu, Shaomin & Do, Phuc, 2017. "Editorial," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 1-3.
    10. Chen, Ying & Wang, Ze & Li, YingYi & Kang, Rui & Mosleh, Ali, 2018. "Reliability analysis of a cold-standby system considering the development stages and accumulations of failure mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 1-12.
    11. Mocellin, Paolo & Pilenghi, Lisa, 2023. "Semi-quantitative approach to prioritize risk in industrial chemical plants aggregating safety, economics and ageing: A case study," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    12. KanÄ ev, DuÅ¡ko & Gjorgiev, Blaže & Volkanovski, Andrija & ÄŒepin, Marko, 2016. "Time-dependent unavailability of equipment in an ageing NPP: Sensitivity study of a developed model," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 11-20.
    13. Lin, Zhixian & Tao, Longlong & Wang, Shaoxuan & Yong, Nuo & Xia, Dongqin & Wang, Jianye & Ge, Daochuan, 2024. "A subset simulation analysis framework for rapid reliability evaluation of series-parallel cold standby systems," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    14. Naseri, Masoud & Baraldi, Piero & Compare, Michele & Zio, Enrico, 2016. "Availability assessment of oil and gas processing plants operating under dynamic Arctic weather conditions," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 66-82.
    15. Srivastav, Himanshu & Barros, Anne & Lundteigen, Mary Ann, 2020. "Modelling framework for performance analysis of SIS subject to degradation due to proof tests," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    16. Afzali, Peyman & Keynia, Farshid & Rashidinejad, Masoud, 2019. "A new model for reliability-centered maintenance prioritisation of distribution feeders," Energy, Elsevier, vol. 171(C), pages 701-709.
    17. Jia, Xiang & Chen, Hao & Cheng, Zhijun & Guo, Bo, 2016. "A comparison between two switching policies for two-unit standby system," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 109-118.
    18. Zhang, Aibo & Srivastav, Himanshu & Barros, Anne & Liu, Yiliu, 2021. "Study of testing and maintenance strategies for redundant final elements in SIS with imperfect detection of degraded state," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    19. Hellmich, Mario & Berg, Heinz-Peter, 2015. "Markov analysis of redundant standby safety systems under periodic surveillance testing," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 48-58.
    20. Martorell, S. & Martón, I. & Villamizar, M. & Sánchez, A.I. & Carlos, S., 2014. "Evaluation of risk impact of changes to Completion Times addressing model and parameter uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 190-201.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:202:y:2020:i:c:s0951832020304932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.