Optimizing software rejuvenation policy for tasks with periodic inspections and time limitation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2019.106776
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Dohi, Tadashi & Zheng, Junjun & Okamura, Hiroyuki & Trivedi, Kishor S., 2018. "Optimal periodic software rejuvenation policies based on interval reliability criteria," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 463-475.
- Levitin, Gregory & Xing, Liudong & Huang, Hong-Zhong, 2019. "Optimization of partial software rejuvenation policy," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 289-296.
- Levitin, Gregory & Xing, Liudong & Xiang, Yanping, 2020. "Cost minimization of real-time mission for software systems with rejuvenation," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
- Machida, Fumio & Miyoshi, Naoto, 2017. "Analysis of an optimal stopping problem for software rejuvenation in a deteriorating job processing system," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 128-135.
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2018. "Heterogeneous 1-out-of-N warm standby systems with online checkpointing," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 127-136.
- Levitin, Gregory & Xing, Liudong & Ben-Haim, Hanoch, 2018. "Optimizing software rejuvenation policy for real time tasks," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 202-208.
- Levitin, Gregory & Xing, Liudong & Luo, Liang, 2019. "Joint optimal checkpointing and rejuvenation policy for real-time computing tasks," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 63-72.
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2014. "Cold vs. hot standby mission operation cost minimization for 1-out-of-N systems," European Journal of Operational Research, Elsevier, vol. 234(1), pages 155-162.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Levitin, Gregory & Xing, Liudong & Xiang, Yanping, 2020. "Cost minimization of real-time mission for software systems with rejuvenation," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
- Levitin, Gregory & Xing, Liudong & Huang, Hong-Zhong, 2019. "Optimization of partial software rejuvenation policy," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 289-296.
- Levitin, Gregory & Xing, Liudong & Luo, Liang, 2019. "Joint optimal checkpointing and rejuvenation policy for real-time computing tasks," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 63-72.
- Junjun Zheng & Hiroyuki Okamura & Tadashi Dohi, 2021. "Availability Analysis of Software Systems with Rejuvenation and Checkpointing," Mathematics, MDPI, vol. 9(8), pages 1-15, April.
- Levitin, Gregory & Xing, Liudong & Ben-Haim, Hanoch, 2018. "Optimizing software rejuvenation policy for real time tasks," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 202-208.
- Wen, Tao & Deng, Yong, 2020. "The vulnerability of communities in complex networks: An entropy approach," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2018. "Co-residence based data vulnerability vs. security in cloud computing system with random server assignment," European Journal of Operational Research, Elsevier, vol. 267(2), pages 676-686.
- Nan Zhang & Sen Tian & Le Li & Zhongbin Wang & Jun Zhang, 2023. "Maintenance analysis of a partial observable K-out-of-N system with load sharing units," Journal of Risk and Reliability, , vol. 237(4), pages 703-713, August.
- Amirhossain Chambari & Javad Sadeghi & Fakhri Bakhtiari & Reza Jahangard, 2016. "A note on a reliability redundancy allocation problem using a tuned parameter genetic algorithm," OPSEARCH, Springer;Operational Research Society of India, vol. 53(2), pages 426-442, June.
- Khastgir, Siddartha & Brewerton, Simon & Thomas, John & Jennings, Paul, 2021. "Systems Approach to Creating Test Scenarios for Automated Driving Systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
- Chatwattanasiri, Nida & Coit, David W. & Wattanapongsakorn, Naruemon, 2016. "System redundancy optimization with uncertain stress-based component reliability: Minimization of regret," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 73-83.
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Optimal sequencing of elements activation in 1-out-of-n warm standby system with storage," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
- Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2018. "Optimizing availability of heterogeneous standby systems exposed to shocks," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 137-145.
- Wu, Shaomin & Do, Phuc, 2017. "Editorial," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 1-3.
- Kim, Heungseob, 2018. "Maximization of system reliability with the consideration of component sequencing," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 64-72.
- Wu, Hui & Li, Yan-Fu & Bérenguer, Christophe, 2020. "Optimal inspection and maintenance for a repairable k-out-of-n: G warm standby system," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
- Levitin, Gregory & Xing, Liudong & Haim, Hanoch Ben & Dai, Yuanshun, 2019. "Optimal structure of series system with 1-out-of-n warm standby subsystems performing operation and rescue functions," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 523-531.
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Heterogeneous 1-out-of-n standby systems with limited unit operation time," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
- Kim, Heungseob & Kim, Pansoo, 2017. "Reliability models for a nonrepairable system with heterogeneous components having a phase-type time-to-failure distribution," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 37-46.
- Chen, Ying & Wang, Ze & Li, YingYi & Kang, Rui & Mosleh, Ali, 2018. "Reliability analysis of a cold-standby system considering the development stages and accumulations of failure mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 1-12.
More about this item
Keywords
Reliability; Software full rejuvenation; Periodic inspection; Task completion probability; Real-time;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:197:y:2020:i:c:s0951832019309457. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.