IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v13y2022i2d10.1007_s13198-021-01522-z.html
   My bibliography  Save this article

Computation algorithms for workload-dependent optimal checkpoint placement

Author

Listed:
  • Tadashi Dohi

    (Hiroshima University)

  • Hiroyuki Okamura

    (Hiroshima University)

  • Cun-Hua Qian

    (Nanjing Tech University)

Abstract

In this paper we revisit a checkpoint/restart model by Slim et al (A new flexible 542 checkpoint/restart model, INRIA Technical Report, 6751, Centre 543 de recherche INRIA Grenoble, 2008) and derive the workload-dependent optimal checkpoint placement policies. Two cases are considered, where the system overhead parameters are independent and dependent of the cumulative workload. It is shown that the periodic and aperiodic checkpoint placement policies are always optimal in independent and dependent cases respectively, in terms of the minimization of expected total processing time. We provide the Lagrange algorithms to determine the optimal checkpoint sequences in the respective cases. Numerical examples are presented to investigate the sensitivity of system-failure parameter on the optimal checkpoint placement.

Suggested Citation

  • Tadashi Dohi & Hiroyuki Okamura & Cun-Hua Qian, 2022. "Computation algorithms for workload-dependent optimal checkpoint placement," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 788-796, June.
  • Handle: RePEc:spr:ijsaem:v:13:y:2022:i:2:d:10.1007_s13198-021-01522-z
    DOI: 10.1007/s13198-021-01522-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-021-01522-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-021-01522-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Junjun Zheng & Hiroyuki Okamura & Tadashi Dohi, 2021. "Availability Analysis of Software Systems with Rejuvenation and Checkpointing," Mathematics, MDPI, vol. 9(8), pages 1-15, April.
    2. Levitin, Gregory & Xing, Liudong & Luo, Liang, 2019. "Joint optimal checkpointing and rejuvenation policy for real-time computing tasks," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 63-72.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huixia Huo, 2024. "Optimal Corrective Maintenance Policies via an Availability-Cost Hybrid Factor for Software Aging Systems," Mathematics, MDPI, vol. 12(5), pages 1-14, February.
    2. Levitin, Gregory & Xing, Liudong & Xiang, Yanping, 2020. "Optimizing software rejuvenation policy for tasks with periodic inspections and time limitation," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    3. Levitin, Gregory & Xing, Liudong & Xiang, Yanping, 2020. "Cost minimization of real-time mission for software systems with rejuvenation," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    4. Levitin, Gregory & Xing, Liudong & Huang, Hong-Zhong, 2019. "Optimization of partial software rejuvenation policy," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 289-296.
    5. Junjun Zheng & Hiroyuki Okamura & Tadashi Dohi, 2021. "Availability Analysis of Software Systems with Rejuvenation and Checkpointing," Mathematics, MDPI, vol. 9(8), pages 1-15, April.
    6. Wen, Tao & Deng, Yong, 2020. "The vulnerability of communities in complex networks: An entropy approach," Reliability Engineering and System Safety, Elsevier, vol. 196(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:13:y:2022:i:2:d:10.1007_s13198-021-01522-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.