IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v190y2019ic5.html
   My bibliography  Save this article

The role of protocol layers and macro-cognitive functions in engineered system resilience

Author

Listed:
  • Amodeo, Domenico C.
  • Francis, Royce A.

Abstract

Engineered system resilience has emerged as an important concept for researchers, policy makers, and managers over the past two decades. It is critical to the operation of complex systems that are crucial to social and economic systems, such as interdependent critical infrastructures. While the measurement of infrastructure resilience is well-studied, in this paper the authors present the concept that a system's selected strategy for self-organizing is the mechanism for contending with unanticipated events. Self-organizing is a fundamental activity of temporarily modifying system processes and inter-organizational relationships to better respond to a disruptive event. The authors build on existing concepts of how complex systems manage resilience, and illustrate the new concept in the context of transportation networks. If strategies for self-organizing exist, they can be defined and characterized into a limited number of archetypes. This paper develops the concept of self-organizing as an important part of resilience management, and presents two illustrative case studies which are early attempts to characterize these strategies [4]. Understanding strategies for re-organization may help to improve understanding of how traditional resilience metrics are applied or how risk is assessed and managed in complex systems, by providing a context for how decision makers manage responses under uncertain circumstances.

Suggested Citation

  • Amodeo, Domenico C. & Francis, Royce A., 2019. "The role of protocol layers and macro-cognitive functions in engineered system resilience," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
  • Handle: RePEc:eee:reensy:v:190:y:2019:i:c:5
    DOI: 10.1016/j.ress.2019.106508
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018304010
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.106508?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erica Gralla & Jarrod Goentzel & Charles Fine, 2016. "Problem Formulation and Solution Mechanisms: A Behavioral Study of Humanitarian Transportation Planning," Production and Operations Management, Production and Operations Management Society, vol. 25(1), pages 22-35, January.
    2. Ostrom, Vincent & Tiebout, Charles M. & Warren, Robert, 1961. "The Organization of Government in Metropolitan Areas: A Theoretical Inquiry," American Political Science Review, Cambridge University Press, vol. 55(4), pages 831-842, December.
    3. Aven, Terje, 2017. "How some types of risk assessments can support resilience analysis and management," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 536-543.
    4. Zoe Szajnfarber & Erica Gralla, 2017. "Qualitative methods for engineering systems: Why we need them and how to use them," Systems Engineering, John Wiley & Sons, vol. 20(6), pages 497-511, November.
    5. Jennifer Rowley, 2012. "Conducting research interviews," Management Research Review, Emerald Group Publishing Limited, vol. 35(3/4), pages 260-271, March.
    6. Jensen, Anders & Aven, Terje, 2018. "A new definition of complexity in a risk analysis setting," Reliability Engineering and System Safety, Elsevier, vol. 171(C), pages 169-173.
    7. Yacov Y. Haimes, 2009. "On the Definition of Resilience in Systems," Risk Analysis, John Wiley & Sons, vol. 29(4), pages 498-501, April.
    8. J. Park & T. P. Seager & P. S. C. Rao & M. Convertino & I. Linkov, 2013. "Integrating Risk and Resilience Approaches to Catastrophe Management in Engineering Systems," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 356-367, March.
    9. Righi, Angela Weber & Saurin, Tarcisio Abreu & Wachs, Priscila, 2015. "A systematic literature review of resilience engineering: Research areas and a research agenda proposal," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 142-152.
    10. David A. Broniatowski & Joel Moses, 2016. "Measuring Flexibility, Descriptive Complexity, and Rework Potential in Generic System Architectures," Systems Engineering, John Wiley & Sons, vol. 19(3), pages 207-221, May.
    11. Aven, Terje, 2016. "Risk assessment and risk management: Review of recent advances on their foundation," European Journal of Operational Research, Elsevier, vol. 253(1), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Feng & Tian, Jin & Shi, Chenli & Ling, Jiamu & Chen, Zian & Xu, Zhengguo, 2024. "A multi-stage quantitative resilience analysis and optimization framework considering dynamic decisions for urban infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Terje Aven, 2019. "The Call for a Shift from Risk to Resilience: What Does it Mean?," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1196-1203, June.
    2. David J. Yu & Michael L. Schoon & Jason K. Hawes & Seungyoon Lee & Jeryang Park & P. Suresh C. Rao & Laura K. Siebeneck & Satish V. Ukkusuri, 2020. "Toward General Principles for Resilience Engineering," Risk Analysis, John Wiley & Sons, vol. 40(8), pages 1509-1537, August.
    3. Uday, Payuna & Chandrahasa, Rakshit & Marais, Karen, 2019. "System Importance Measures: Definitions and Application to System-of-Systems Analysis," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    4. Aven, Terje & Ylönen, Marja, 2018. "A risk interpretation of sociotechnical safety perspectives," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 13-18.
    5. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    6. Corinne Curt & Jean‐Marc Tacnet, 2018. "Resilience of Critical Infrastructures: Review and Analysis of Current Approaches," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2441-2458, November.
    7. Steen, Riana & Ferreira, Pedro, 2020. "Resilient flood-risk management at the municipal level through the lens of the Functional Resonance Analysis Model," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    8. Liu, Xing & Fang, Yi-Ping & Zio, Enrico, 2021. "A Hierarchical Resilience Enhancement Framework for Interdependent Critical Infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Chao Fang & Piao Dong & Yi-Ping Fang & Enrico Zio, 2020. "Vulnerability analysis of critical infrastructure under disruptions: An application to China Railway High-speed," Journal of Risk and Reliability, , vol. 234(2), pages 235-245, April.
    10. Cassottana, Beatrice & Shen, Lijuan & Tang, Loon Ching, 2019. "Modeling the recovery process: A key dimension of resilience," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    11. Payuna Uday & Karen Marais, 2015. "Designing Resilient Systems‐of‐Systems: A Survey of Metrics, Methods, and Challenges," Systems Engineering, John Wiley & Sons, vol. 18(5), pages 491-510, October.
    12. Lucian Ispas & Costel Mironeasa & Alessandro Silvestri, 2023. "Risk-Based Approach in the Implementation of Integrated Management Systems: A Systematic Literature Review," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    13. Varajão, João & Fernandes, Gabriela & Amaral, António & Gonçalves, A. Manuela, 2021. "Team Resilience Model: An Empirical Examination of Information Systems Projects," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    14. Dubaniowski, Mateusz Iwo & Heinimann, Hans Rudolf, 2020. "A framework for modeling interdependencies among households, businesses, and infrastructure systems; and their response to disruptions," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    15. Adrian J. Hickford & Simon P. Blainey & Alejandro Ortega Hortelano & Raghav Pant, 2018. "Resilience engineering: theory and practice in interdependent infrastructure systems," Environment Systems and Decisions, Springer, vol. 38(3), pages 278-291, September.
    16. Yu, Yuerong & Liu, Kezhong & Fu, Shanshan & Chen, Jihong, 2024. "Framework for process risk analysis of maritime accidents based on resilience theory: A case study of grounding accidents in Arctic waters," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    17. Aven, Terje & Renn, Ortwin, 2018. "Improving government policy on risk: Eight key principles," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 230-241.
    18. Thomas Ying‐Jeh Chen & Valerie Nicole Washington & Terje Aven & Seth David Guikema, 2020. "Review and Evaluation of the J100‐10 Risk and Resilience Management Standard for Water and Wastewater Systems," Risk Analysis, John Wiley & Sons, vol. 40(3), pages 608-623, March.
    19. Kumar, Nikhil & Poonia, Vikas & Gupta, B.B. & Goyal, Manish Kumar, 2021. "A novel framework for risk assessment and resilience of critical infrastructure towards climate change," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    20. Yuan Yang, 2019. "Reforming Health, Safety, and Environmental Regulation for Offshore Operations in China: Risk and Resilience Approaches?," Sustainability, MDPI, vol. 11(9), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:190:y:2019:i:c:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.