IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v35y2015i2d10.1007_s10669-015-9549-2.html
   My bibliography  Save this article

Resilience to global food supply catastrophes

Author

Listed:
  • Seth D. Baum

    (Global Catastrophic Risk Institute)

  • David C. Denkenberger

    (Global Catastrophic Risk Institute)

  • Joshua M. Pearce

    (Michigan Technological University)

  • Alan Robock

    (Michigan Technological University
    Rutgers University)

  • Richelle Winkler

    (Michigan Technological University)

Abstract

Many global catastrophic risks threaten major disruption to global food supplies, including nuclear wars, volcanic eruptions, asteroid and comet impacts, and plant disease outbreaks. This paper discusses options for increasing the resilience of food supplies to these risks. In contrast to local catastrophes, global food supply catastrophes cannot be addressed via food aid from external locations. Three options for food supply resilience are identified: food stockpiles, agriculture, and foods produced from alternative (non-sunlight) energy sources including biomass and fossil fuels. Each of these three options has certain advantages and disadvantages. Stockpiles are versatile but expensive. Agriculture is efficient but less viable in certain catastrophe scenarios. Alternative foods are inexpensive pre-catastrophe but need to be scaled up post-catastrophe and may face issues of social acceptability. The optimal portfolio of food options will typically include some of each and will additionally vary by location as regions vary in population and access to food input resources. Furthermore, if the catastrophe shuts down transportation, then resilience requires local self-sufficiency in food. Food supply resilience requires not just the food itself, but also the accompanying systems of food production and distribution. Overall, increasing food supply resilience can play an important role in global catastrophic risk reduction. However, it is unwise to attempt maximizing food supply resilience, because doing so comes at the expense of other important objectives, including catastrophe prevention. Taking all these issues into account, the paper proposes a research agenda for analysis of specific food supply resilience decisions.

Suggested Citation

  • Seth D. Baum & David C. Denkenberger & Joshua M. Pearce & Alan Robock & Richelle Winkler, 2015. "Resilience to global food supply catastrophes," Environment Systems and Decisions, Springer, vol. 35(2), pages 301-313, June.
  • Handle: RePEc:spr:envsyd:v:35:y:2015:i:2:d:10.1007_s10669-015-9549-2
    DOI: 10.1007/s10669-015-9549-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-015-9549-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-015-9549-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Igor Linkov & Cate Fox-Lent & Jeffrey Keisler & Stefano Della Sala & Jorg Sieweke, 2014. "Risk and resilience lessons from Venice," Environment Systems and Decisions, Springer, vol. 34(3), pages 378-382, September.
    2. Lowder, Sarah K. & Skoet, Jakob & Singh, Saumya, 2014. "What do we really know about the number and distribution of farms and family farms in the world? Background paper for The State of Food and Agriculture 2014," ESA Working Papers 288983, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    3. Seth D. Baum & Timothy M. Maher & Jacob Haqq-Misra, 2013. "Double catastrophe: intermittent stratospheric geoengineering induced by societal collapse," Environment Systems and Decisions, Springer, vol. 33(1), pages 168-180, March.
    4. Baum, Seth D. & Handoh, Itsuki C., 2014. "Integrating the planetary boundaries and global catastrophic risk paradigms," Ecological Economics, Elsevier, vol. 107(C), pages 13-21.
    5. Mutlu Özdoğan & Alan Robock & Christopher Kucharik, 2013. "Impacts of a nuclear war in South Asia on soybean and maize production in the Midwest United States," Climatic Change, Springer, vol. 116(2), pages 373-387, January.
    6. Timothy M. Maher & Seth D. Baum, 2013. "Adaptation to and Recovery from Global Catastrophe," Sustainability, MDPI, vol. 5(4), pages 1-19, March.
    7. J. Park & T. P. Seager & P. S. C. Rao & M. Convertino & I. Linkov, 2013. "Integrating Risk and Resilience Approaches to Catastrophe Management in Engineering Systems," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 356-367, March.
    8. Terje Aven, 2011. "On Some Recent Definitions and Analysis Frameworks for Risk, Vulnerability, and Resilience," Risk Analysis, John Wiley & Sons, vol. 31(4), pages 515-522, April.
    9. Lili Xia & Alan Robock, 2013. "Impacts of a nuclear war in South Asia on rice production in Mainland China," Climatic Change, Springer, vol. 116(2), pages 357-372, January.
    10. Yacov Y. Haimes, 2009. "On the Definition of Resilience in Systems," Risk Analysis, John Wiley & Sons, vol. 29(4), pages 498-501, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Franc-Dąbrowska, Justyna & Drejerska, Nina, 2022. "Resilience in the food sector - environmental, social and economic perspectives in crisis situations," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 25(5), December.
    2. Len Fisher & Anders Sandberg, 2022. "A Safe Governance Space for Humanity: Necessary Conditions for the Governance of Global Catastrophic Risks," Global Policy, London School of Economics and Political Science, vol. 13(5), pages 792-807, November.
    3. Pringle, Adam M. & Handler, R.M. & Pearce, J.M., 2017. "Aquavoltaics: Synergies for dual use of water area for solar photovoltaic electricity generation and aquaculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 572-584.
    4. Igor Linkov & Sabrina Larkin & James H. Lambert, 2015. "Concepts and approaches to resilience in a variety of governance and regulatory domains," Environment Systems and Decisions, Springer, vol. 35(2), pages 183-184, June.
    5. David Denkenberger & Joshua M. Pearce, 2018. "Micronutrient Availability in Alternative Foods During Agricultural Catastrophes," Agriculture, MDPI, vol. 8(11), pages 1-15, October.
    6. Seth D. Baum, 2018. "Uncertain human consequences in asteroid risk analysis and the global catastrophe threshold," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 759-775, November.
    7. Seth D. Baum, 2019. "Risk–Risk Tradeoff Analysis of Nuclear Explosives for Asteroid Deflection," Risk Analysis, John Wiley & Sons, vol. 39(11), pages 2427-2442, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seth D. Baum, 2015. "Risk and resilience for unknown, unquantifiable, systemic, and unlikely/catastrophic threats," Environment Systems and Decisions, Springer, vol. 35(2), pages 229-236, June.
    2. Terje Aven, 2019. "The Call for a Shift from Risk to Resilience: What Does it Mean?," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1196-1203, June.
    3. Hiba Baroud & Jose E. Ramirez‐Marquez & Kash Barker & Claudio M. Rocco, 2014. "Stochastic Measures of Network Resilience: Applications to Waterway Commodity Flows," Risk Analysis, John Wiley & Sons, vol. 34(7), pages 1317-1335, July.
    4. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    5. Nicolas Rossignol & Pierre Delvenne & Catrinel Turcanu, 2015. "Rethinking Vulnerability Analysis and Governance with Emphasis on a Participatory Approach," Risk Analysis, John Wiley & Sons, vol. 35(1), pages 129-141, January.
    6. Gabel Taggart, 2023. "Taking stock of systems for organizing existential and global catastrophic risks: Implications for policy," Global Policy, London School of Economics and Political Science, vol. 14(3), pages 489-499, June.
    7. Almoghathawi, Yasser & Barker, Kash & Albert, Laura A., 2019. "Resilience-driven restoration model for interdependent infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 12-23.
    8. Corinne Curt & Jean‐Marc Tacnet, 2018. "Resilience of Critical Infrastructures: Review and Analysis of Current Approaches," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2441-2458, November.
    9. Baum, Seth D. & Handoh, Itsuki C., 2014. "Integrating the planetary boundaries and global catastrophic risk paradigms," Ecological Economics, Elsevier, vol. 107(C), pages 13-21.
    10. Liu, Xing & Fang, Yi-Ping & Zio, Enrico, 2021. "A Hierarchical Resilience Enhancement Framework for Interdependent Critical Infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    11. Thomas Ying‐Jeh Chen & Valerie Nicole Washington & Terje Aven & Seth David Guikema, 2020. "Review and Evaluation of the J100‐10 Risk and Resilience Management Standard for Water and Wastewater Systems," Risk Analysis, John Wiley & Sons, vol. 40(3), pages 608-623, March.
    12. Seth D. Baum, 2023. "Assessing natural global catastrophic risks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 2699-2719, February.
    13. Chao Fang & Piao Dong & Yi-Ping Fang & Enrico Zio, 2020. "Vulnerability analysis of critical infrastructure under disruptions: An application to China Railway High-speed," Journal of Risk and Reliability, , vol. 234(2), pages 235-245, April.
    14. Kumar, Nikhil & Poonia, Vikas & Gupta, B.B. & Goyal, Manish Kumar, 2021. "A novel framework for risk assessment and resilience of critical infrastructure towards climate change," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    15. Amodeo, Domenico C. & Francis, Royce A., 2019. "The role of protocol layers and macro-cognitive functions in engineered system resilience," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    16. Yuan Yang, 2019. "Reforming Health, Safety, and Environmental Regulation for Offshore Operations in China: Risk and Resilience Approaches?," Sustainability, MDPI, vol. 11(9), pages 1-13, May.
    17. Cassottana, Beatrice & Shen, Lijuan & Tang, Loon Ching, 2019. "Modeling the recovery process: A key dimension of resilience," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    18. Nathan Alexander Sears, 2020. "Existential Security: Towards a Security Framework for the Survival of Humanity," Global Policy, London School of Economics and Political Science, vol. 11(2), pages 255-266, April.
    19. Yan, Rundong & Dunnett, Sarah & Andrews, John, 2023. "A Petri net model-based resilience analysis of nuclear power plants under the threat of natural hazards," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    20. Heimir Thorisson & James H. Lambert & John J. Cardenas & Igor Linkov, 2017. "Resilience Analytics with Application to Power Grid of a Developing Region," Risk Analysis, John Wiley & Sons, vol. 37(7), pages 1268-1286, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:35:y:2015:i:2:d:10.1007_s10669-015-9549-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.