An Importance Sampling Framework for Time-Variant Reliability Analysis Involving Stochastic Processes
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Breitung, Karl, 1988. "Asymptotic crossing rates for stationary Gaussian vector processes," Stochastic Processes and their Applications, Elsevier, vol. 29(2), pages 195-207, September.
- Sonal, S.D. & Ammanagi, S & Kanjilal, O & Manohar, C.S., 2018. "Experimental estimation of time variant system reliability of vibrating structures based on subset simulation with Markov chain splitting," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 55-68.
- Richard, Jean-Francois & Zhang, Wei, 2007. "Efficient high-dimensional importance sampling," Journal of Econometrics, Elsevier, vol. 141(2), pages 1385-1411, December.
- Jean-Francois Richard, 2007. "Efficient High-Dimensional Importance Sampling," Working Paper 321, Department of Economics, University of Pittsburgh, revised Jan 2007.
- Yan Shi & Zhenzhou Lu & Ruyang He, 2020. "Advanced time-dependent reliability analysis based on adaptive sampling region with Kriging model," Journal of Risk and Reliability, , vol. 234(4), pages 588-600, August.
- Hawchar, Lara & El Soueidy, Charbel-Pierre & Schoefs, Franck, 2017. "Principal component analysis and polynomial chaos expansion for time-variant reliability problems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 406-416.
- Du, Weiqi & Luo, Yuanxin & Wang, Yongqin, 2019. "Time-variant reliability analysis using the parallel subset simulation," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 250-257.
- Lei Wang & Xiaojun Wang & Ruixing Wang & Xiao Chen, 2015. "Time-Dependent Reliability Modeling and Analysis Method for Mechanics Based on Convex Process," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-16, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jian Wang & Xiang Gao & Zhili Sun, 2021. "A Multilevel Simulation Method for Time-Variant Reliability Analysis," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
- Wang, Zhonglai & Liu, Jing & Yu, Shui, 2020. "Time-variant reliability prediction for dynamic systems using partial information," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
- Bauwens, L. & Galli, F., 2009.
"Efficient importance sampling for ML estimation of SCD models,"
Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1974-1992, April.
- Luc, BAUWENS & Fausto Galli, 2007. "Efficient importance sampling for ML estimation of SCD models," Discussion Papers (ECON - Département des Sciences Economiques) 2007032, Université catholique de Louvain, Département des Sciences Economiques.
- BAUWENS, Luc & GALLI, Fausto, 2007. "Efficient importance sampling for ML estimation of SCD models," LIDAM Discussion Papers CORE 2007053, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- BAUWENS, Luc & GALLI, Fausto, 2009. "Efficient importance sampling for ML estimation of SCD models," LIDAM Reprints CORE 2088, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Yu, Jun, 2012.
"A semiparametric stochastic volatility model,"
Journal of Econometrics, Elsevier, vol. 167(2), pages 473-482.
- Jun Yu, 2008. "A Semiparametric Stochastic Volatility Model," Working Papers CoFie-04-2008, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Florian Heiss, 2016. "Discrete Choice Methods with Simulation," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 688-692, April.
- Mengheng Li & Siem Jan (S.J.) Koopman, 2018. "Unobserved Components with Stochastic Volatility in U.S. Inflation: Estimation and Signal Extraction," Tinbergen Institute Discussion Papers 18-027/III, Tinbergen Institute.
- Siem Jan Koopman & André Lucas & Marcel Scharth, 2016.
"Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models,"
The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 97-110, March.
- Siem Jan Koopman & Andre Lucas & Marcel Scharth, 2012. "Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models," Tinbergen Institute Discussion Papers 12-020/4, Tinbergen Institute.
- Roman Liesenfeld & Guilherme Valle Moura & Jean‐François Richard, 2010.
"Determinants and Dynamics of Current Account Reversals: An Empirical Analysis,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 486-517, August.
- Liesenfeld, Roman & Moura, Guilherme V. & Richard, Jean-François, 2009. "Determinants and dynamics of current account reversals: an empirical analysis," Economics Working Papers 2009-04, Christian-Albrechts-University of Kiel, Department of Economics.
- Falk Bräuning & Siem Jan Koopman, 2016.
"The dynamic factor network model with an application to global credit risk,"
Working Papers
16-13, Federal Reserve Bank of Boston.
- Falk Bräuning & Siem Jan Koopman, 2016. "The Dynamic Factor Network Model with an Application to Global Credit-Risk," Tinbergen Institute Discussion Papers 16-105/III, Tinbergen Institute.
- Cao, Runan & Sun, Zhili & Wang, Jian & Guo, Fanyi, 2022. "A single-loop reliability analysis strategy for time-dependent problems with small failure probability," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
- Mesters, G. & Koopman, S.J., 2014.
"Generalized dynamic panel data models with random effects for cross-section and time,"
Journal of Econometrics, Elsevier, vol. 180(2), pages 127-140.
- Geert Mesters & Siem Jan Koopman, 2012. "Generalized Dynamic Panel Data Models with Random Effects for Cross-Section and Time," Tinbergen Institute Discussion Papers 12-009/4, Tinbergen Institute, revised 18 Mar 2014.
- Zhang, Yang & Xu, Jun & Beer, Michael, 2023. "A single-loop time-variant reliability evaluation via a decoupling strategy and probability distribution reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
- Baştürk, N. & Borowska, A. & Grassi, S. & Hoogerheide, L. & van Dijk, H.K., 2019.
"Forecast density combinations of dynamic models and data driven portfolio strategies,"
Journal of Econometrics, Elsevier, vol. 210(1), pages 170-186.
- Nalan Basturk & Agnieszka Borowska & Stefano Grassi & Lennart (L.F.) Hoogerheide & Herman (H.K.) van Dijk, 2018. "Forecast Density Combinations of Dynamic Models and Data Driven Portfolio Strategies," Tinbergen Institute Discussion Papers 18-076/III, Tinbergen Institute.
- Nalan Basturk & Agnieszka Borowska & Stefano Grassi & Lennart Hoogerheide & Herman K. van Dijk, 2018. "Forecast Density Combinations of Dynamic Models and Data Driven Portfolio Strategies," Working Paper 2018/10, Norges Bank.
- Blazsek, Szabolcs & Escribano, Alvaro, 2010.
"Knowledge spillovers in US patents: A dynamic patent intensity model with secret common innovation factors,"
Journal of Econometrics, Elsevier, vol. 159(1), pages 14-32, November.
- Blazsek, Szabolcs, 2009. "Knowledge spillovers in U.S. patents: a dynamic patent intensity model with secret common innovation factors," UC3M Working papers. Economics we098951, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Szabolcs Blazsek & Alvaro Escribano, 2010. "Knowledge spillovers in U.S. patents: A dynamic patent intensity model with secret common innovation factors," Post-Print hal-00732533, HAL.
- Ozturk, Serda Selin & Demirer, Riza & Gupta, Rangan, 2022.
"Climate uncertainty and carbon emissions prices: The relative roles of transition and physical climate risks,"
Economics Letters, Elsevier, vol. 217(C).
- Serda Selin Ozturk & Riza Demirer & Rangan Gupta, 2022. "Climate Uncertainty and Carbon Emissions Prices: The Relative Roles of Transition and Physical Climate Risks," Working Papers 202215, University of Pretoria, Department of Economics.
- Liesenfeld, Roman & Richard, Jean-François, 2008.
"Improving MCMC, using efficient importance sampling,"
Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 272-288, December.
- Liesenfeld, Roman & Richard, Jean-François, 2006. "Improving MCMC Using Efficient Importance Sampling," Economics Working Papers 2006-05, Christian-Albrechts-University of Kiel, Department of Economics.
- Roman Liesenfeld & Guilherme V. Moura & Jean-François Richard & Hariharan Dharmarajan, 2013.
"Efficient Likelihood Evaluation of State-Space Representations,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(2), pages 538-567.
- DeJong, David Neil & Dharmarajan, Hariharan & Liesenfeld, Roman & Moura, Guilherme V. & Richard, Jean-François, 2009. "Efficient likelihood evaluation of state-space representations," Economics Working Papers 2009-02, Christian-Albrechts-University of Kiel, Department of Economics.
- David N. DeJong & Hariharan Dharmarajan & Roman Liesenfeld & Guilherme Moura & Jean-Francois Richard, 2009. "Efficient Likelihood Evaluation of State-Space Representations," Working Papers 2009/15, Czech National Bank.
- Steffen R. Henzel & Malte Rengel, 2017.
"Dimensions Of Macroeconomic Uncertainty: A Common Factor Analysis,"
Economic Inquiry, Western Economic Association International, vol. 55(2), pages 843-877, April.
- Steffen Henzel & Malte Rengel, 2013. "Dimensions of macroeconomic uncertainty: A common factor analysis," ifo Working Paper Series 167, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Henzel, Steffen R. & Rengel, Malte, 2017. "Dimensions of macroeconomic uncertainty: a common factor analysis," Munich Reprints in Economics 49932, University of Munich, Department of Economics.
- Steffen Henzel & Malte Rengel, 2014. "Dimensions of Macroeconomic Uncertainty: A Common Factor Analysis," CESifo Working Paper Series 4991, CESifo.
- Tommaso Proietti & Alessandra Luati, 2013.
"Maximum likelihood estimation of time series models: the Kalman filter and beyond,"
Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362,
Edward Elgar Publishing.
- Luati, Alessandra & Proietti, Tommaso, 2012. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Working Papers 2012_02, University of Sydney Business School, Discipline of Business Analytics.
- Tommaso, Proietti & Alessandra, Luati, 2012. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," MPRA Paper 39600, University Library of Munich, Germany.
- Hautsch, Nikolaus & Ou, Yangguoyi, 2012.
"Analyzing interest rate risk: Stochastic volatility in the term structure of government bond yields,"
Journal of Banking & Finance, Elsevier, vol. 36(11), pages 2988-3007.
- Hautsch, Nikolaus & Ou, Yangguoyi, 2009. "Analyzing interest rate risk: Stochastic volatility in the term structure of government bond yields," CFS Working Paper Series 2009/03, Center for Financial Studies (CFS).
More about this item
Keywords
time-variant reliability analysis; importance sampling; cumulative failure probability;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7776-:d:592867. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.