IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v177y2018icp94-107.html
   My bibliography  Save this article

A subset simulation based approach with modified conditional sampling and estimator for loss exceedance curve computation

Author

Listed:
  • Bansal, Sahil
  • Cheung, Sai Hung

Abstract

A new stochastic simulation-based approach for the evaluation of loss exceedance curve without repeated reliability analyses, and the generation of samples of input random variables and any function of them conditioned on different levels of loss exceedance is proposed for a comprehensive risk and loss analysis, and investigation. The proposed approach involves the modification of the simulation algorithms in the Subset Simulation and the development of new estimators. It allows for a more comprehensive characterization of the probability distribution of the loss including the tail parts due to combinations of scenarios which can lead to extreme and catastrophic consequences. The approach is robust to the number of random variables involved. The effectiveness and efficiency of the proposed method are shown by an illustrative example involving a seismic loss analysis of a multi-story inelastic structure. A stochastic ground motion model coupled with a stochastic nonlinear dynamic model, and probabilistic fragility and loss functions are considered.

Suggested Citation

  • Bansal, Sahil & Cheung, Sai Hung, 2018. "A subset simulation based approach with modified conditional sampling and estimator for loss exceedance curve computation," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 94-107.
  • Handle: RePEc:eee:reensy:v:177:y:2018:i:c:p:94-107
    DOI: 10.1016/j.ress.2018.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017307706
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alban, Andres & Darji, Hardik A. & Imamura, Atsuki & Nakayama, Marvin K., 2017. "Efficient Monte Carlo methods for estimating failure probabilities," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 376-394.
    2. Bansal, Sahil & Cheung, Sai Hung, 2017. "On the evaluation of multiple failure probability curves in reliability analysis with multiple performance functions," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 583-594.
    3. Cadini, F. & Gioletta, A., 2016. "A Bayesian Monte Carlo-based algorithm for the estimation of small failure probabilities of systems affected by uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 15-27.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Menz, Morgane & Gogu, Christian & Dubreuil, Sylvain & Bartoli, Nathalie & Morio, Jérôme, 2020. "Adaptive coupling of reduced basis modeling and Kriging based active learning methods for reliability analyses," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    2. Krupenev, Dmitry & Boyarkin, Denis & Iakubovskii, Dmitrii, 2020. "Improvement in the computational efficiency of a technique for assessing the reliability of electric power systems based on the Monte Carlo method," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    3. Jiang, Chen & Qiu, Haobo & Yang, Zan & Chen, Liming & Gao, Liang & Li, Peigen, 2019. "A general failure-pursuing sampling framework for surrogate-based reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 47-59.
    4. Li, Zai-Wei & Zhou, Yun-Lai & Liu, Xiao-Zhou & Abdel Wahab, Magd, 2023. "Service reliability assessment of ballastless track in high speed railway via improved response surface method," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    5. Keshtegar, Behrooz & Chakraborty, Subrata, 2018. "An efficient-robust structural reliability method by adaptive finite-step length based on Armijo line search," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 195-206.
    6. Ma, Yuan-Zhuo & Zhu, Yi-Chen & Li, Hong-Shuang & Nan, Hang & Zhao, Zhen-Zhou & Jin, Xiang-Xiang, 2022. "Adaptive Kriging-based failure probability estimation for multiple responses," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    7. Wenxia Liu & Dapeng Guo & Yahui Xu & Rui Cheng & Zhiqiang Wang & Yueqiao Li, 2018. "Reliability Assessment of Power Systems with Photovoltaic Power Stations Based on Intelligent State Space Reduction and Pseudo-Sequential Monte Carlo Simulation," Energies, MDPI, vol. 11(6), pages 1-14, June.
    8. Cadini, Francesco & Agliardi, Gian Luca & Zio, Enrico, 2017. "Estimation of rare event probabilities in power transmission networks subject to cascading failures," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 9-20.
    9. Keshtegar, Behrooz & Chakraborty, Souvik, 2018. "Dynamical accelerated performance measure approach for efficient reliability-based design optimization with highly nonlinear probabilistic constraints," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 69-83.
    10. Da Hye Lee & In Hong Chang & Hoang Pham, 2020. "Software Reliability Model with Dependent Failures and SPRT," Mathematics, MDPI, vol. 8(8), pages 1-14, August.
    11. Zywiec, William J. & Mazzuchi, Thomas A. & Sarkani, Shahram, 2021. "Analysis of process criticality accident risk using a metamodel-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    12. Yang, Meide & Zhang, Dequan & Jiang, Chao & Han, Xu & Li, Qing, 2021. "A hybrid adaptive Kriging-based single loop approach for complex reliability-based design optimization problems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    13. Shang, Xiaobing & Su, Li & Fang, Hai & Zeng, Bowen & Zhang, Zhi, 2023. "An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    14. Bansal, Sahil & Cheung, Sai Hung, 2017. "On the evaluation of multiple failure probability curves in reliability analysis with multiple performance functions," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 583-594.
    15. Yaqun, Qi & Ping, Jin & Ruizhi, Li & Sheng, Zhang & Guobiao, Cai, 2020. "Dynamic reliability analysis for the reusable thrust chamber: A multi-failure modes investigation based on coupled thermal-structural analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    16. Cheng, Kai & Lu, Zhenzhou, 2019. "Time-variant reliability analysis based on high dimensional model representation," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 310-319.
    17. Wu, Shengnan & Zhang, Laibin & Zheng, Wenpei & Liu, Yiliu & Lundteigen, Mary Ann, 2019. "Reliability modeling of subsea SISs partial testing subject to delayed restoration," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    18. Cheng, Kai & Lu, Zhenzhou, 2021. "Adaptive Bayesian support vector regression model for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    19. Ghaderi, A. & Hassani, H. & Khodaygan, S., 2021. "A Bayesian-reliability based multi-objective optimization for tolerance design of mechanical assemblies," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    20. Perrin, G., 2021. "Point process-based approaches for the reliability analysis of systems modeled by costly simulators," Reliability Engineering and System Safety, Elsevier, vol. 214(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:177:y:2018:i:c:p:94-107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.